Технология передачи электронной информации сети. Сети передачи данных и технологии построения сетей

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Особенности систем передачи информации лазерной связи. История создания и развития лазерной технологии. Структура локальной вычислительной сети с применением атмосферных оптических линий связи. Рассмотрение имитационного моделирования системы.

    дипломная работа , добавлен 28.10.2014

    Современные цифровые технологии передачи информации. Система RFTS в корпоративной сети связи. Методика проектирования магистральной ВОЛС, расчет магистрали Уфа-Самара. Различия в физических параметрах одномодового и многомодовых оптических кабелей.

    дипломная работа , добавлен 16.04.2015

    Технологии построения сетей передачи данных. Обоснование программных и аппаратных средств системы передачи информации. Эргономическая экспертиза программного обеспечения Traffic Inspector. Разработка кабельной системы волоконно-оптических линий связи.

    дипломная работа , добавлен 24.02.2013

    Методы кодирования сообщения с целью сокращения объема алфавита символов и достижения повышения скорости передачи информации. Структурная схема системы связи для передачи дискретных сообщений. Расчет согласованного фильтра для приема элементарной посылки.

    курсовая работа , добавлен 03.05.2015

    Изучение закономерностей и методов передачи сообщений по каналам связи и решение задачи анализа и синтеза систем связи. Проектирование тракта передачи данных между источником и получателем информации. Модель частичного описания дискретного канала.

    курсовая работа , добавлен 01.05.2016

    Связь как возможность передачи информации на расстоянии. Понятие и типы сигнальных средств, их функциональные особенности, оценка роли и значения в экспедициях. Связь и сигнализация в арктических условиях, существующие технологии и методики, приемы.

    реферат , добавлен 31.05.2013

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

    курсовая работа , добавлен 24.12.2006

Современная система общего среднего образования, все входящие в нее учебные направления, так или иначе, нацелены на формирование у школьников умений работать с информацией. Неслучайно в большинстве государственных программ, определяющих приоритетные направления развития образования в Российской Федерации, особое внимание уделяется формированию общеучебных и общекультурных навыков работы учащихся с информацией и средствами ее обработки, что становится основным стержнем профессиональной деятельности выпускников учебных заведений в условиях информационного общества, необходимым компонентом информационной культуры. В свою очередь, стремление к формированию информационной культуры у будущих выпускников приводит к ориентации общего образования на приобретение учащимися знаний о телекоммуникациях и средствах массовой информации, использование средств телекоммуникаций для приобретения различных знаний и творческого самовыражения, оценку достоверности информации, развитие критического мышления, соотнесение информации и знания, умение правильно организовать информационный процесс, оценить и обеспечить информационную безопасность.

Телекоммуникационные системы имеют первостепенное значение не только в системе общего среднего образования, а играют основополагающую роль практически во всех сферах жизни общества. На уровне развития телекоммуникационного информационного пространства наиболее существенный отпечаток накладывают уровень развития первичных сетей связи и уровень развития сетевых информационных технологий, которые по праву можно рассматривать в качестве технологий передачи информации .

Под сетью связи понимают совокупность проводных, радио-, оптических и иных каналов связи, специализированной каналообразующей аппаратуры, а также центров и узлов связи, обеспечивающих функционирование данной сети. Практически во всех современных сетях связи, используемых при создании информационных телекоммуникационных систем, одновременно присутствуют и работают совместно несколько различных по своим характеристикам участков сети. Эти обстоятельства в значительной степени определяют стратегию и тактику создания и использования сетевых информационных технологий.



Сетевые информационные технологии развивались одновременно с развитием каналов связи. В начале прошлого века основу телеграфных и телефонных сетей связи составляли аналоговые проводные и радиоканалы электросвязи, которые затем с развитием микроэлектроники стали все больше заменяться цифровыми волоконно-оптическими линиями связи, обладающими существенно более высокими характеристиками по качеству и скорости передачи информации. Возникло понятие телекоммуникационные технологии, которое объединяет способы рациональной организации работы телекоммуникационных систем.

Телекоммуникационные системы, используемые сегодня в системе общего среднего образования, как правило, основаны на различных соединениях компьютеров между собой. Связанные между собой компьютеры можно рассматривать с разных точек зрения. С одной стороны, объединение компьютеров – это компьютерная сеть . С другой стороны, – это средство передачи информации в пространстве, средство организации общения людей. Именно благодаря этому свойству компьютерные сети все чаще называют телекоммуникационными сетями, подчеркивая, тем самым, их предназначение, а не особенности их устройства.

Различают локальные и глобальные телекоммуникационные сети . Как правило, локальной называют сеть, связывающую компьютеры, находящиеся в одном здании, одной организации, в пределах района, города, страны. Иными словами чаще всего локальной является сеть, ограниченная в пространстве. Локальные сети распространены в сфере образования. Большинство школ и других учебных заведений имеет компьютеры, связанные в локальную сеть. В тоже время современные технологии позволяют связывать отдельные компьютеры, находящиеся не только в разных помещениях или зданиях, но находящиеся на разных континентах. Неслучайно можно встретить учебные заведения, имеющие филиалы в разных странах, компьютеры которых объединены в локальные сети. Более того, локальные сети могут объединять и компьютеры разных учебных заведений, что позволяет говорить о существовании локальных сетей сферы образования.

В отличие от локальных, глобальные сети не имеют пространственных ограничений. К глобальной сети может быть подключен любой компьютер. Любой человек может получить доступ к информации, размещенной в этой сети. Наиболее известным примером глобальной телекоммуникационной сети является сеть Интернет (INTERNET), доступ к которой появляется у всё большего числа средних школ. Интернет не является единственной глобальной телекоммуникационной сетью. Существуют и другие, такие как сеть FIDO или сеть SPRINT.

Таким образом, большинство школ и других учебных заведений системы общего среднего образования обладают как локальными сетями, так и возможностью использования глобальных сетей.

При всем многообразии информационных и телекоммуникационных технологий, а также способов организации данных при их пересылке по каналам связи всемирная информационная компьютерная сеть Интернет занимает центральное место. Более того, на сегодняшний день, это практически единственная глобальная телекоммуникационная сеть, повсеместно используемая в системе общего среднего образования. Этому во многом способствуют высокая скорость и надежность передачи через Интернет данных различных форматов (текст, графические изображения, звук, видео и пр.). Сеть Интернет предоставляет возможность коллективного доступа к учебным материалам, которые могут быть представлены как в виде простейших учебников (электронных текстов), так и в виде сложных интерактивных систем, компьютерных моделей, виртуальных учебных сред и т.д.

Количество пользователей и источников информации сети Интернет непрерывно увеличивается. Кроме того, происходит постоянное улучшение качества предоставляемых телекоммуникационных услуг. Благодаря этому, высококачественный доступ к Интернет получают не только предприятия и организации, работающие в экономической и других сферах, но и учреждения общего среднего образования.

Современный Интернет характеризуется наличием серьезной проблемы организации глобального поиска информации. Разработаны, так называемые, поисковые системы, которые по нужному слову или сочетанию слов находят ссылки на те страницы в сети, в которых представлено это слово или сочетание. Вместе с тем, несмотря на наличие существующих поисковых систем, пользователю приходится тратить большое количество времени как на процесс поиска информации, так и на обработку и систематизацию полученных данных.

В образовании данная проблема ощущается особенно остро: образовательные информационные ресурсы если и представлены в сети, то, как правило, представлены несистемно. Отсутствие системного подхода к размещению подобных ресурсов, а также отсутствие единообразия в решении психолого-педагогических, технологических, эстетических, эргономических и ряда других проблем при разработке и эксплуатации образовательных ресурсов сети Интернет приводит к практическому неиспользованию преимуществ телекоммуникационных средств в целях повышения качества образовательного процесса.

Наиболее распространенной коммуникационной технологией и соответствующим сервисом в компьютерных сетях стала технология компьютерного способа пересылки и обработки информационных сообщений, обеспечивающая оперативную связь между людьми. Электронная почта (E-mail) – система для хранения и пересылки сообщений между людьми, имеющими доступ к компьютерной сети. Посредством электронной почты можно передавать по компьютерным сетям любую информацию (текстовые документов, изображения, цифровые данные, звукозаписи и т.д.).

Такая сервисная служба реализует:

· редактирование документов перед передачей,

· хранение документов и сообщений,

· пересылку корреспонденции,

· проверку и исправление ошибок, возникающих при передаче,

· выдачу подтверждения о получении корреспонденции адресатом,

· получение и хранение информации,

· просмотр полученной корреспонденции.

Электронная почта может быть использована для общения участников учебного процесса и пересылки учебно-методических материалов. Важным свойством электронной почты, привлекательным для общего среднего образования, является возможность реализации асинхронного обмена информацией. Чтобы использовать электронную почту, достаточно освоить несколько команд почтового клиента для отправки, приема и обработки информации. Заметим, что при коммуникации посредством электронной почты возникает больше психолого-педагогических проблем, чем технических. Дело в том, что при непосредственном человеческом общении информация передается не только с помощью речи, здесь включаются иные формы коммуникации: мимика, жесты и т.д. Конечно, для передачи эмоций при переписке можно использовать «смайлики», но это не решает проблему обезличивания общения. Тем не менее, переход к письменной речи воспитывает такие положительные черты, как точность, краткость выражения мысли и аккуратность.

Электронная почта может использоваться педагогами для консультации, отправки контрольных работ и профессионального общения с коллегами. Целесообразно также ее использование для проведения электронного занятия в асинхронном режиме, когда обучающимся предварительно пересылается текст занятия в электронном виде, выдержки из рекомендованной литературы и другие учебные материалы, а затем проводятся консультации по электронной почте.

Отличительной особенностью и удобством электронной почты является возможность рассылать одно и то же сообщение сразу большому числу адресатов.

Подобный принцип рассылки используется другой службой сети Интернет под названием списки рассылки . Данный сервис работает в режиме подписки. Подписавшись на список рассылки, абонент с определенной периодичностью получает на свой почтовый ящик подборку электронных сообщений по выбранной теме. Списки рассылки выполняют в сети Интернет функции периодических изданий.

В системе общего образования с помощью списков рассылки можно организовать так называемые «виртуальные учебные классы» . В созданной учебной группе школьников объясняются правила и способы подписки, и она приступает к работе. Каждое сообщение, адресованное группе любым ее участником, автоматически рассылается всем членом группы. Одним из участников такой группы может быть учитель.

Основными дидактическими возможностями использования списков рассылки являются автоматическая рассылка учебно-методических материалов и организация виртуальных учебных классов.

Другим популярным сервисом, предоставляемым современными телекоммуникационными сетями и реализующим обмен информацией между людьми, объединенными общими интересами, являются телеконференции.

Телеконференция представляет собой сетевой форум, организованный для ведения дискуссии и обмена новостями по определенной тематике.

Телеконференция позволяют публиковать сообщения по интересам на специальных компьютерах в сети. Сообщения можно читать, подключившись к компьютеру и выбрав тему для дискуссии. Далее, по желанию, возможен ответ автору статьи или отправка собственного сообщения. Таким образом, организовывается сетевая дискуссия, носящая новостной характер, поскольку сообщения хранятся небольшой период времени.

Наличие аудио- и видеооборудования (микрофон, цифровая видеокамера и др.), подключенного к компьютеру, позволяет организовать компьютерные аудио и видеоконференции, все более широко распространяемые в системе общего среднего образования.

В отличие от списков рассылки, основанных на применении электронной почты, некоторые телеконференции и группы новостей работают в режиме реального времени. Разница заключается в том, что в случае со списком рассылки обмен информацией осуществляется в режиме off-line путем автоматической рассылки электронных писем. Сервер новостей публикует все сообщения на общей доске немедленно, и сохраняет их в течение некоторого времени. Таким образом, телеконференции позволяют организовать дискуссию как в режиме on-line, так и в отложенном режиме. При организации учебных занятий целесообразно использование групп новостей, модерируемых учителем.

С развитием технических средств компьютерных сетей увеличивается скорость передачи данных. Это позволяет пользователям, подключенным к сети, не только обмениваться текстовыми сообщениями, но и передавать на значительное расстояние звук и видеоизображение. Одним из представителей программ, реализующих общение через сеть, является программа NetMeeting, входящая в состав комплекта Internet Explorer. MS NetMeeting является средством информатизации, реализующим возможности прямой связи через Интернет.

Следует отметить, что для реализации звуковой связи необходимо соответствующее техническое оборудование: звуковая карта, микрофон и акустические системы. Для передачи видеоизображения нужно видеоплата и камера, или только камера, поддерживающая стандарт Video for Windows.

Основными направления использования MS NetMeeting в учебном процессе являются:

· организация виртуальных учебных занятий и консультаций в реальном режиме времени, включая голосовое общение и передачу видеоизображений участников;

· обмен информацией в текстовом и графическом режиме;

· организация совместной работы с учебной информацией в режиме on-line;

· пересылка учебно-методической информации в виде файлов в реальном режиме времени.

Одной из важнейших телекоммуникационных технологий является распределенная обработка данных . В этом случае персональные компьютеры используются на местах возникновения и применения информации. Если они соединены каналами связи, то это дает возможность распределить их ресурсы по отдельным функциональным сферам деятельности и изменить технологию обработки данных в направлении децентрализации.

В наиболее сложных системах распределенной обработки данных осуществляется подключение к различным информационным службам и системам общего назначения (службам новостей, национальным и глобальным информационно-поисковым системам, базам данных и банкам знаний и т.д.).

Чрезвычайно важным для общего среднего образования сервисом, реализованным в компьютерных сетях, является автоматизированный поиск информации . Используя специализированные средства – информационно-поисковые системы, можно в кратчайшие сроки найти интересующие сведения в мировых информационных источниках.

Основными дидактическими целями использования подобных ресурсов, получаемых по телекоммуникационным каналам, в обучении школьников являются сообщение сведений, формирование и закрепление знаний, формирование и совершенствование умений и навыков, контроль усвоения и обобщение.

Использование имеющихся на сегодняшний день образовательных информационных ресурсов, большинство из которых опубликовано в сети Интернет, позволяет:

· организовать разнообразные формы деятельности школьников по самостоятельному извлечению и представлению знаний;

· применять весь спектр возможностей современных информационных и телекоммуникационных технологий в процессе выполнения разнообразных видов учебной деятельности, в том числе, таких как регистрация, сбор, хранение, обработка информации, интерактивный диалог, моделирование объектов, явлений, процессов, функционирование лабораторий (виртуальных, с удаленным доступом к реальному оборудованию) и др.;

· использовать в учебном процессе возможности технологий мультимедиа, гипертекстовых и гипермедиа систем;

· диагностировать интеллектуальные возможности школьников, а также уровень их знаний, умений, навыков, уровень подготовки к конкретному занятию;

· управлять обучением, автоматизировать процессы контроля результатов учебной деятельности, тренировки, тестирования, генерировать задания в зависимости от интеллектуального уровня конкретного обучаемого, уровня его знаний, умений, навыков, особенностей его мотивации;

· создавать условия для осуществления самостоятельной учебной деятельности школьников, для самообучения, саморазвития, самосовершенствования, самообразования, самореализации;

· работать в современных телекоммуникационных средах, обеспечить управление информационными потоками.

Таким образом, компьютерные телекоммуникации – это не только мощное средство обучения, позволяющее обучать работе с информацией, но, с другой стороны, компьютерные телекоммуникации – это особая среда общения людей друг с другом, среда интерактивного взаимодействия представителей различных национальных, возрастных, профессиональных и других групп пользователей независимо от их места нахождения.

К сожалению, многие существующие методики эффективного использования телекоммуникационных технологий в процессе обучения школьников до сих пор не в полной мере используются учителями. Современный учитель должен помимо умения работать с новейшими компьютерными технологиями иметь представление о возможных способах их использования в учебном процессе. Опыт теоретического и практического освоения учителями различных методик использования телекоммуникационных технологий в процессе обучения мог бы стать основой для повышения эффективности и качества обучения, формирования и дальнейшего совершенствования своего профессионального мастерства.

Тема 4.2. Информационные ресурсы сети Интернет

Информатизация является одним из основных факторов, заставляющим образование совершенствоваться. Изменяются содержание и методы обучения, меняется роль педагога, который постепенно из простого транслятора знаний превращается в организатора деятельности обучаемых по приобретению новых знаний, умений и навыков. Существенным средством информатизации являются образовательные информационные ресурсы, опубликованные в сети Интернет. Неслучайно их корректное, своевременное и уместное использование всеми специалистами, работающими в системе общего среднего образования, является залогом эффективности подготовки школьников.

Рассмотрим работу с распределенными информационными ресурсами компьютерных сетей более подробно.

Подобные средства ИКТ позволяют привнести в работу учреждения общего среднего образования:

· использование информации, размещенной на учебных и научных сайтах сети Интернет (Web-сайтах), для подготовки учебно-методических материалов. Рефератов и сообщений;

· организацию представительства учебного заведения в сети Инетрнет;

· создание сайта, посвященного содержанию школьной дисциплины и размещение его в сети Интернет;

· размещение личных Web-сайтов учителей и школьников.

Большинство информационных ресурсов сети Интернет представлено так называемыми Web-страницами, организованными по принципам гипермедиа.

Web-страница – это документ, содержащий:

· форматированный текст;

· мультимедийные объекты (графика, звук, видеоклипы);

· активные компоненты, способные выполнять работу на компьютере по заложенной в них программе.

Как правило, Web-страница – это достаточно сложный документ, состоящий из целой группы файлов.

В рамках одной страницы трудно изложить все необходимые сведения, поэтому, чаще всего, информацию представляют в виде набора из нескольких десятков или сотен Web-страниц, связанных вместе единой темой, общим стилем оформления и взаимными гипертекстовыми ссылками. Такой набор называется Web-сайтом или Web-узлом.

Каждый Web-сайт имеет свою стартовую страницу, которая называется начальной или домашней.

Обычный Web-узел отправляет запрошенный документ только по обращению клиента. Существуют Web-узлы, способные самостоятельно передавать обновленную информацию при условии регистрации и подписки клиента.

Многочисленные Web-сайты и Web-страницы хранятся на огромном множестве так называемых WWW-серверов, то есть компьютеров, на которых установлено специальное программное обеспечение.

Пользователи, имеющие доступ к сети, получают и просматривают информацию с Web-страниц при помощи программ-клиентов для всемирной паутины, которые получили специфическое название Web-браузеров (броузеры, обозреватели).

Для получения страницы браузер посылает по компьютерной сети запрос Web-серверу, на котором хранится необходимый документ. В ответ на запрос сервер высылает программе просмотра требуемую Web-страницу или сообщение об отказе, если она по тем или иным причинам недоступна. Взаимодействие клиент-сервер происходит по определенным правилам, или, иначе говоря, по прикладному протоколу.

Web-документ может содержать форматированный текст, графику и гипертекстовые ссылки на различные ресурсы сети Интернет. Чтобы реализовать все эти возможности и обеспечить независимость информационных ресурсов от системного программного обеспечения персонального компьютера, на котором они будут просматриваться, был разработан специальный язык. Он получил название HyperText Markup Language (HTML) или Язык разметки гипертекста.

Каждый файл в сети Интернет также имеет свой уникальный адрес. Он называется URL. URL (Universal Resource Locator, универсальный указатель ресурсов) – адрес любого файла в сети. В URL содержится название протокола, по которому нужно обращаться к файлу, адрес компьютера с указанием, какую программу-сервер запустить на нем, и полный путь к файлу.

До недавнего времени основными конкурентами по выпуску комплекта программ-клиентов для работы с информационными ресурсами сети Интернет являлись две крупных фирмы – Netscape Communications и Microsoft. Продукт первой фирмы называется Netscape Communicator, в его состав входит популярная программа-браузер Netscape Navigator. Пакет клиентского программного обеспечения для сети Интернет от фирмы Microsoft называется Internet Explorer. Браузер в данном комплекте получил одноименное название.

По мере развития сети Интернет и увеличения числа опубликованных в ней информационных ресурсов все большее значение приобретает проблема поиска необходимых ресурсов. Для системы общего среднего образования она заключается в поиске таких информационных ресурсов, опубликованных в сети, которые смогли бы на практике повысить эффективность системы подготовки школьников.

Подобный поиск основан на взаимодействии с информационными ресурсами, опубликованными во всемирной телекоммуникационной сети Интернет.

Путь к огромному информационному багажу человечества, хранящемуся в библиотеках, фонотеках, фильмотеках, лежит через карточки каталогов. В Интернете существуют аналогичные механизмы для нахождения требуемой информации. Речь идет о поисковых серверах, служащих отправной точкой для пользователей. С содержательной точки зрения о них можно говорить как о еще одной специальной службе сети Интернет.

Поисковые сервера достаточно многочисленны и разнообразны. Принято различать поисковые индексы и каталоги. Сервера-индексы регулярно прочитывают содержание большинства веб-страниц сети Интернет ("индексируют" их), и помещают их полностью или частично в общую базу данных. Пользователи поискового сервера имеют возможность осуществлять полнотекстовый поиск по этой базе данных, используя ключевые слова, относящиеся к интересующей их теме. Выдача результатов поиска обычно состоит из выдержек рекомендуемых вниманию пользователя страниц и их адресов (URL), оформленных в виде гиперссылок. Работать с поисковыми серверами этого типа удобно, когда хорошо представляешь себе, что именно хочешь найти.

Каталоги выросли из списков интересных ссылок, закладок (bookmarks). По сути дела они представляют собой многоуровневую смысловую классификацию ссылок, построенную по принципу "от общего к частному". Иногда ссылки сопровождаются кратким описанием информационного ресурса. Как правило, возможен поиск в названиях рубрик (категориях) и описаниях ресурсов по ключевым словам. Каталогами пользуются тогда, когда не вполне четко знают, что именно ищут. Переходя от самых общих категорий к более частным, можно определить, с каким именно мультимедиа-ресурсом сети Интернет следует ознакомиться. Поисковые каталоги уместно сравнивать с тематическими библиотечными каталогами, словарями-тезаурусами или биологическими классификациями животных и растений. Ведение поисковых каталогов частично автоматизировано, но до сих пор классификация ресурсов осуществляется главным образом вручную.

Поисковые каталоги бывают общего назначения и специализированные. Поисковые каталоги общего назначения включают в себя информационные ресурсы самого разного профиля. Специализированные каталоги объединяют только ресурсы, посвященные определенной тематике. Им часто удается достичь лучшего охвата ресурсов из своей области и построить более адекватную рубрикацию.

В сети Интернет существует достаточно много каталогов и порталов, собирающих ресурсы, использование которых было бы целесообразным в системе общего среднего образования.

Использование таких каталогов и информационных ресурсов сети Интернет целесообразно для:

· оперативного обеспечения педагогов, обучаемых и родителей актуальной, своевременной и достоверной информацией, соответствующей целям и содержанию образования;

· организации разных форм деятельности обучаемых, связанных с самостоятельным овладением знаниями;

· применения современных информационных и телекоммуникационных технологий (технологий мультимедиа, виртуальной реальности, гипертекстовых и гипермедиа-технологий) в учебной деятельности;

· объективного измерения, оценки и прогноза результативности обучения, сопоставления результатов учебной деятельности школьников с требованиями государственного образовательного стандарта;

· управления учебной деятельностью учащегося, адекватно его уровню знаний, умений и навыков, а также особенностям его мотивации к учению;

· создания условий для индивидуального самостоятельного обучения школьников;

· постоянного и оперативного общения педагогов, обучаемых и родителей, нацеленного на повышение эффективности обучения;

· организации эффективной деятельности учреждений общего образования в соответствии с принятыми в стране нормативными положениями и содержательными концепциями.

Целесообразными к использованию в общем среднем образовании могут оказаться самые разные информационные ресурсы сети Интернет. Среди таких ресурсов можно выделить образовательные Интернет-порталы, которые сами являются каталогами ресурсов, сервисные и инструментальные компьютерные программные средства, электронные представления бумажных изданий, электронные учебные средства и средства измерения результатов обучения, ресурсы, содержащие новости, объявления и средства для общения участников образовательного процесса.

Наибольшее количество информационных ресурсов нацелено на использование учителями и школьниками в ходе учебного процесса. Часть таких ресурсов предназначена для использования в традиционной системе обучения в соответствии с государственными образовательными стандартами и примерными программами по каждой учебной дисциплине. Другие образовательные ресурсы предназначены для внеучебной и внеурочной работы школьников, углубления знаний и самостоятельного изучения (для школьников и абитуриентов). Выделяются ресурсы справочного и энциклопедического характера, а также средства измерения, контроля и оценки результатов учебной деятельности.

Используя информационные ресурсы сети Интернет, педагоги смогут более эффективно управлять познавательной деятельностью школьников, оперативно отслеживать результаты обучения и воспитания, принимать обоснованные и целесообразные меры по повышению уровня обученности и качества знаний учащихся, целенаправленно совершенствовать педагогическое мастерство, иметь оперативный адресный доступ к требуемой информации учебного, методического и организационного характера. Педагоги, занимающиеся разработкой собственных информационных ресурсов, приобретают дополнительную возможность использования фрагментов образовательных ресурсов, опубликованных в сети, делая необходимые ссылки и соблюдая авторское право.

Доступ учащихся к информационным ресурсам сети Интернет обеспечит школьников основным и дополнительным учебным материалом, необходимым для обучения в школе, выполнения заданий преподавателя, самостоятельного обучения и организации досуга. Благодаря таким ресурсам у школьников появляется возможность оперативно знакомиться с новостями, узнавать о проводимых олимпиадах, конкурсах, консультироваться, общаться с педагогами и сверстниками. Абитуриенты найдут в информационных ресурсах сети Интернет информацию, необходимую для продолжения образования – сведения об институтах, университетах и академиях, сроки и условия поступления, учебные и методические материалы, необходимые для подготовки к вступительным испытаниям.

Родители школьников и представители общественности, воспользовавшись информационными ресурсами сети Интернет, смогут узнать больше о развитии и функционировании федеральной и региональных систем образования, познакомиться с учебными планами, программами и рекомендациями педагогов, оказать посильное влияние на повышение качества общего среднего образования.

Используя информационные ресурсы сети Интернет, администрация образовательных учреждений сможет принимать эффективные управленческие решения, соотнося их с действующим законодательством и нормативными документами, объективно оценивать деятельность педагогов, оперативно взаимодействовать с коллегами, повысив общий уровень планирования и администрирования деятельности учебного заведения.

Основную часть информационных ресурсов целесообразно задействовать для повышения эффективности обучения школьников по всем дисциплинам образовательной программы общего среднего образования.

Важно понимать, что использование информационных ресурсов сети Интернет должно быть предварительно соотнесено педагогами с основными компонентами реализуемой методической системы обучения – целями, содержанием, методами, организационными формами и применяемыми средствами обучения. Используемые ресурсы должны вписываться в эту систему, не противоречить и соответствовать ее компонентам.

Особое внимание должно быть уделено подбору и разработке методов обучения с использованием информационных ресурсов сети Интернет. В числе таких методов могут быть предложены поиск и использование школьниками учебной информации, значимой с точки зрения целей обучения, проектно-исследовательская деятельность обучаемых, основанная на взаимодействии с ресурсами сети Интернет, использование коммуникационных компонентов таких ресурсов для учебного общения учащихся и педагогов.

Тема 4.3. Образовательные Интернет-порталы

Подключение школ к сети Интернет порождает ряд проблем, требующих немедленного разрешения. В их числе подготовка и переподготовка педагогов к осуществлению профессиональной деятельности с использованием телекоммуникаций, обеспечение системы образования качественными информационными ресурсами, опубликованными в сети Интернет, а также информирование педагогов и обучаемых о способах доступа к таким ресурсам.

В этом направлении уже многое сделано. Сформирована система подготовки учителей в области информатизации образования, созданы образовательные порталы, разработаны и опубликованы в сети электронные образовательные ресурсы практически по всем школьным дисциплинам.

Образовательные порталы, создаваемые в сети Интернет, оказывают все большее влияние на повышение эффективности использования средств ИКТ в обучении школьников.

В предыдущих разделах настоящего электронного издания уже отмечалось, что отсутствие системного подхода к размещению информационных ресурсов в сети Интернет, а также отсутствие единообразия в решении психолого-педагогических, технологических, эстетических, эргономических и ряда других проблем при разработке и использовании образовательных информационных ресурсов приводит к практическому неиспользованию преимуществ телекоммуникационных средств в целях повышения качества образовательного процесса в системе общего среднего образования.

Частично разрешение данной проблемы может быть осуществлено на основе разработки и внедрения комплексных информационных образовательных порталов (интегрированных Web-систем). В этом случае такие порталы , объединяя в себе основные информационные ресурсы, имеющие высокую образовательную ценность, могли бы стать «точкой входа» в современные телекоммуникационные системы для всех лиц, так или иначе связанных с образованием.

Использование системы порталов позволяет более эффективно организовать работу педагогов, поскольку на порталах собраны и систематизированы наиболее востребованные ресурсы. Используя их, учителя, ученики и родители смогут получить доступ к качественным учебным и методическим материалам, сократить время на поиск требуемой информации, изучить особенности классификации информационных ресурсов сети Интернет.

Полезными могут оказаться собранные на порталах ссылки на ресурсы, содержащие контактную информацию об учреждениях образования и отдельных педагогах, новости сферы образования, объявления об олимпиадах, конкурсах, конференциях и других мероприятиях, в которых регулярно принимают участие учителя и школьники.

Большинство наиболее качественных информационных ресурсов, использование которых повысило бы эффективность общего среднего образования каталогизировано на образовательных Интернет-порталах. В настоящее время в России уже выработана организационная схема создания системы образовательных порталов, имеющая свои особенности. В организационную схему создания системы образовательных порталов включаются:

· горизонтальный портал «Российское образование» (www.edu.ru),

· профильные вертикальные порталы по областям знаний: гуманитарный, экономико-социальный, естественно-научный, инженерный, педагогический, медицинский, сельскохозяйственный и др.,

· специализированные вертикальные порталы: книгоиздание, единый экзамен, новости образования и др.

Горизонтальный портал «Российское образование» обеспечивает:

· навигацию по всем вертикальным порталам;

· поиск мультимедиа-информации в области образования в Интернет;

· персонификацию и персональную адаптацию интерфейса как путем выбора пользователем собственной категории (обучаемый, преподаватель, администратор, разработчик портала) и указанием уровня образования, так и путем конструирования собственного интерфейса;

· формирование и предоставление срезов вертикальных порталов по уровням образования;

· хранение и предоставление информации в области образования (законодательство, приказы, нормативные документы, стандарты, перечни специальностей, федеральный комплект учебников, база данных вузов и др.);

· публикацию ежедневного обзора прессы по вопросам образования;

· новостную ленту в области образования;

· организацию проведения форумов, дискуссионных групп, списков рассылки.

Профильные вертикальные порталы должны содержать материалы для всех уровней образования: начальной школы, средней школы, начального профессионального образования, среднего профессионального образования, высшего образования, дополнительного образования, послевузовского образования.

Практически у любой современной компании существует потребность в улучшении эффективности сетей и технологий компьютерных систем. Одно из необходимых условий для этого - беспрепятственная передача информации между серверами, хранилищами данных, приложениями и пользователями. Именно способ передачи данных в информационных системах часто становится "бутылочным горлышком" по производительности, сводя на нет все преимущества современных серверов и систем хранения. Разработчики и системные администраторы пытаются устранить наиболее очевидные узкие места, хотя и знают, что после устранения узкого места в одной части системы оно возникает в другой.

На протяжении многих лет узкие места возникали преимущественно на серверах, но по мере функционального и технологического развития серверов они стали перемещаться в сети и системы сетевого хранения данных. В последнее время созданы очень крупные массивы хранения, что переносит узкие места обратно в сеть. Рост объемов данных и их централизация, а также требования приложений нового поколения к пропускной способности часто поглощают всю имеющуюся полосу пропускания.

Когда перед менеджером информационной службы встает задача создания новой или расширения имеющейся системы обработки информации, одним из важнейших вопросов для него будет выбор технологии передачи данных. Эта проблема включает в себя выбор не только сетевой технологии, но и протокола соединения различных периферийных устройств. Наиболее популярные решения, широко применяемые для построения сетей хранения SAN (Storage Area Network), - это Fibre Channel, Ethernet и InfiniBand.

Технология Ethernet

Сегодня технология Ethernet занимает лидирующее положение в секторе высокопроизводительных локальных сетей. Во всем мире предприятия вкладывают средства в кабельные системы и оборудование для Ethernet, в обучение персонала. Широкое распространение этой технологии позволяет удерживать низкие цены на рынке, а стоимость внедрения каждого нового поколения сетей имеет тенденцию к снижению. Постоянный рост объема трафика в современных сетях заставляет операторов, администраторов и архитекторов корпоративных сетей присматриваться к более быстрым сетевым технологиям, чтобы решить проблему дефицита пропускной способности. Добавление в семейство Ethernet стандарта 10-Gigabit Ethernet позволяет поддерживать в локальных сетях новые ресурсоемкие приложения.

Появившись более четверти века назад, технология Ethernet вскоре стала доминирующей в построении локальных сетей. Благодаря простоте инсталляции и сопровождения, надежности и низкой стоимости реализации ее популярность выросла настолько, что сегодня можно смело утверждать - почти весь трафик в Интернете начинается и заканчивается в Ethernet-сетях. Стандарт IEEE 802.3ae 10-Gigabit Ethernet, одобренный в июне 2002 г., стал поворотным пунктом в развитии этой технологии. С его появлением область использования Ethernet расширяется до масштабов городских (MAN) и глобальных (WAN) сетей.

Существует целый ряд рыночных факторов, которые, по утверждению отраслевых аналитиков, способствуют выходу технологии 10-Gigabit Ethernet на первый план. В развитии сетевых технологий уже стало традиционным появление альянса компаний-разработчиков, основная задача которого состоит в продвижении новых сетей. Не стала исключением и 10-Gigabit Ethernet. У истоков этой технологии стояла организация 10-Gigabit Ethernet Alliance (10 GEA), в которую входили такие гиганты индустрии, как 3Com, Cisco, Nortel, Intel, Sun и множество других (всего более ста) компаний. Если в предшествующих версиях Fast Ethernet или Gigabit Ethernet разработчики позаимствовали отдельные элементы других технологий, то спецификации нового стандарта создавались практически с нуля. Кроме того, проект 10-Gigabit Ethernet был ориентирован на крупные транспортные и магистральные сети, например, масштаба города, в то время как даже Gigabit Ethernet разрабатывался исключительно для применения в локальных сетях.

Стандарт 10-Gigabit Ethernet предусматривает передачу информационного потока на скорости до 10 Гбит/с по одно- и многомодовому оптическому кабелю. В зависимости от среды передачи расстояние может составлять от 65 м до 40 км. Новый стандарт должен был обеспечить выполнение следующих основных технических требований:

  • двунаправленный обмен данными в дуплексном режиме в сетях топологии точка-точка;
  • поддержка скорости передачи данных 10 Гбит/с на МАС-уровне;
  • спецификация физического уровня LAN PHY для соединения с локальными сетями, оперирующего на МАС-уровне со скоростью передачи данных 10 Гбит/с;
  • спецификация физического уровня WAN PHY для соединения с сетями SONET/SDH, оперирующего на МАС-уровне со скоростью передачи данных, совместимой со стандартом OC-192;
  • определение механизма приспособления скорости передачи данных уровня МАС к скорости передачи данных WAN PHY;
  • поддержка двух типов оптоволоконного кабеля - одномодового (SMF) и многомодового (MMF);
  • спецификация независимого от среды передачи интерфейса XGMII*;
  • обратная совместимость с предыдущими версиями Ethernet (сохранение формата пакета, размера и т. п.).

* XG здесь означает 10 Gigabit, а MII - Media Independent Interface.

Напомним, что стандарт 10/100 Ethernet определяет два режима: полудуплексный и дуплексный. Полудуплексный в классической версии предусматривает использование разделяемой среды передачи и протокола CSMA/CD (Carrier-Sense Multiple Access/Collision Detection). Основные недостатки этого режима - потеря эффективности при возрастании числа одновременно работающих станций и дистанционные ограничения, связанные с минимальной длиной пакета (составляющей 64 байта). В технологии Gigabit Ethernet для сохранения минимальной длины пакета применяется техника расширения несущей, которая дополняет его до 512 байт. Поскольку стандарт 10-Gigabit Ethernet ориентирован на магистральные соединения типа точка-точка, полудуплексный режим не входит в его спецификацию. Следовательно, в данном случае длина канала ограничивается только характеристиками физической среды, используемыми устройствами приема/передачи, мощностью сигнала и методами модуляции. Необходимую же топологию можно обеспечить, например, с помощью коммутаторов. Дуплексный режим передачи дает также возможность сохранить минимальный размер пакета 64 байта без применения техники расширения несущей.

В соответствии с эталонной моделью взаимодействия открытых систем (OSI) сетевая технология определяется двумя нижними уровнями: физическим (Layer 1, Physical) и канальным (Layer 2, Data Link). В этой схеме уровень физических устройств Ethernet (PHY) соответствует Layer 1, а уровень управления доступом к среде (МАС) - Layer 2. В свою очередь, каждый из этих уровней в зависимости от реализуемой технологии может содержать несколько подуровней.

Уровень МАС (Media Access Control - уровень управления доступом к среде) обеспечивает логическое соединение между МАС-клиентами одноранговых (равноправных) рабочих станций. Его основные функции -инициализация, управление и поддержание соединения с одноранговым узлом сети. Очевидно, что нормальная скорость передачи данных от МАС-уровня к физическому уровню PHY для стандарта 10 Gigabit Ethernet составляет 10 Гбит/с. Однако уровень WAN PHY для согласования с сетями SONET OC-192 должен передавать данные с несколько меньшей скоростью. Это достигается с помощью механизма динамической адаптации межкадрового интервала, предусматривающего его увеличение на предопределенный отрезок времени.

Подуровень согласования Reconciliation Sublayer (рис. 1) представляет собой интерфейс между последовательным потоком данных МАС-уровня и параллельным потоком подуровня XGMII. Он отображает октеты данных МАС-уровня на параллельные тракты XGMII. XGMII - это независимый от среды интерфейс 10 Gigabit. Основная его функция заключается в том, чтобы обеспечить простой и легко реализуемый интерфейс между канальным и физическим уровнями. Он изолирует канальный уровень от специфики физического и тем самым позволяет первому работать на едином логическом уровне с различными реализациями второго. XGMII состоит из двух независимых каналов приема и передачи, по каждому из которых передаются 32 бита данных по четырем 8-разрядным трактам.

Рис. 1. Уровни 10-Gigabit Ethernet.

Следующая часть стека протоколов относится к физическому уровню 10 Gigabit Ethernet. Архитектура Ethernet разбивает физический уровень на три подуровня. Подуровень физического кодирования PCS (Physical Coding Sublayer) выполняет кодирование/декодирование потока данных, поступающих от канального уровня и к нему. Подуровень подключения к физической среде PMA (Physical Media Attachment) - это параллельно-последовательный (прямой и обратный) преобразователь. Он выполняет преобразование группы кодов в поток битов для последовательной бит-ориентированной передачи и обратное преобразование. Этот же подуровень обеспечивает синхронизацию приема/передачи. Зависимый от среды передачи данных подуровень PMD (Physical Media Dependent) отвечает за передачу сигналов в данной физической среде. Типичные функции этого подуровня - формирование и усиление сигнала, модуляция. Разные PMD-устройства поддерживают различные физические среды передачи. В свою очередь, зависимый от среды интерфейс MDI (Media Dependent Interface) задает типы коннекторов для разных физических сред и PMD-устройств.

Технология 10-Gigabit Ethernet обеспечивает низкую по сравнению с альтернативными стоимость владения, включая как стоимость приобретения, так и поддержки, поскольку имеющаяся у заказчиков инфраструктура сетей Ethernet легко взаимодействует с ней. Кроме того, 10 Gigabit Ethernet привлекает администраторов уже знакомой организацией управления и возможностью применить накопленный опыт, так как она использует процессы, протоколы и средства управления, уже развернутые в существующей инфраструктуре. Стоит напомнить, что этот стандарт предоставляет гибкость при проектировании соединений между серверами, коммутаторами и маршрутизаторами. Таким образом, технология Ethernet предлагает три основных преимущества:

  • простоту эксплуатации,
  • высокую пропускную способность,
  • низкую стоимость.

Кроме того, она проще некоторых других технологий, потому что позволяет связывать сети, расположенные в разных местах, как части единой сети. Пропускная способность Ethernet наращивается шагами от 1 до 10 Гбит/с, что позволяет эффективнее использовать емкость сети. Наконец, оборудование Ethernet, как правило, более экономически эффективно по сравнению с традиционным телекоммуникационным оборудованием.

Для иллюстрации возможностей технологии приведем один пример. С помощью сети 10-Gigabit Ethernet группа ученых, работающих над проектом Japanese Data Reservoir (http://data-reservoir.adm.s.u-tokyo.ac.jp), передавала данные из Токио в расположенный в Женеве научно-исследовательский центр физики элементарных частиц CERN. Линия передачи данных пересекла 17 часовых поясов, а ее протяженность составила 11 495 миль (18 495 км). Линия 10-Gigabit Ethernet соединила компьютеры в Токио и Женеве как часть одной и той же локальной сети. В сети применялось оптическое оборудование и коммутаторы Ethernet от Cisco Systems, Foundry Networks и Nortel Networks.

В последние годы Ethernet стали широко применять и операторы связи - для соединения объектов в пределах города. Но сеть Ethernet может протянуться еще дальше, охватив целые континенты.

Fibre Channel

Технология Fibre Channel дает возможность принципиально изменить архитектуру компьютерной сети любой крупной организации. Дело в том, что она хорошо подходит для реализации централизованной системы хранения данных SAN, где дисковые и ленточные накопители находятся в своей отдельной сети, в том числе территориально довольно сильно удаленной от основных корпоративных серверов. Fibre Channel - это стандарт последовательных соединений, предназначенных для высокоскоростных коммуникаций между серверами, накопителями, рабочими станциями и концентраторами и коммутаторами. Отметим, что этот интерфейс практически универсален, он используется не только для подключения отдельных накопителей и хранилищ данных.

Когда появились первые сети, призванные объединить компьютеры для совместной работы, удобным и эффективным оказалось приблизить ресурсы к рабочим группам. Таким образом, в попытке минимизировать сетевую нагрузку накопители информации были равномерно разделены между множеством серверов и настольных компьютеров. В сети одновременно существуют два канала передачи данных: собственно сеть, по которой идет обмен между клиентами и серверами, и канал, по которому происходит обмен данными между системной шиной компьютера и устройством хранения. Это может быть канал между контроллером и жестким диском или между RAID-контроллером и внешним дисковым массивом.

Такое разделение каналов во многом объясняется различными требованиями к пересылке данных. В сети на первом месте стоит доставка нужной информации одному клиенту из множества возможных, для чего необходимо создать определенные и весьма сложные механизмы адресации. Кроме того, сетевой канал предполагает значительные расстояния, поэтому здесь для передачи данных предпочтительно последовательное соединение. А вот канал хранения выполняет крайне простую задачу, предоставляя возможность обмена с заранее известным накопителем данных. Единственное, что от него требуется, - делать это максимально быстро. Расстояния здесь, как правило, небольшие.

Однако современные сети сталкиваются с задачами обработки все больших и больших объемов данных. Высокоскоростные мультимедиа-приложения, обработка изображений требуют гораздо большей скорости ввода-вывода, чем когда-либо ранее. Организации вынуждены хранить все большие объемы данных в режиме online, что требует увеличения емкости внешней памяти. Необходимость страхового копирования огромных объемов данных требует разнесения устройств вторичной памяти на все большие расстояния от серверов обработки. В ряде случаев оказывается, что объединить ресурсы серверов и накопителей в единый пул для центра обработки информации с помощью Fibre Channel гораздо эффективнее, чем при использовании стандартного набора сеть Ethernet плюс интерфейс SCSI.

Институт ANSI зарегистрировал рабочую группу по разработке метода для высокоскоростного обмена данными между суперкомпьютерами, рабочими станциями, ПК, накопителями и устройствами отображения еще в 1988 г. А в 1992 г. три крупнейших компьютерных компании - IBM (http://www.ibm.com), Sun Microsystems (http://www.sun.com) и HP (http://www.hp.com) создали инициативную группу FSCI (Fiber Channel Systems Initiative), перед которой была поставлена задача разработать метод быстрой передачи цифровых данных. Группа выработала ряд предварительных спецификаций - профилей. Поскольку физической средой для обмена информацией должны были стать волоконно-оптические кабели, то и в названии технологии фигурировало слово fiber. Однако несколько лет спустя в соответствующие рекомендации была добавлена возможность использовать и медные провода. Тогда комитет ISO (International Standard Organization) предложил заменить английское написание fiber французским fibre, чтобы как-то уменьшить ассоциации с волоконно-оптической средой, сохранив при этом практически первоначальное написание. Когда предварительная работа по профилям была завершена, дальнейшую работу по поддержке и развитию новой технологии взяла на себя Ассоциация разработчиков волоконно-оптического канала FCA (Fibre Channel Association), которая организационно вошла в комитет ANSI. Помимо FCA была также создана независимая рабочая группа FCLC (Fibre Channel Loop Community), которая начала заниматься продвижением одного из вариантов технологии Fibre Channel - FC-AL (Fibre Channel Arbitrated Loop). В настоящее время всю координационную работу по продвижению технологии Fibre Channel взяла на себя ассоциация FCIA (Fibre Channel Industry Association, http://www.fibrechannel.org). В 1994 г. стандарт FC-PH (физическое соединение и протокол передачи данных) был одобрен комитетом Т11 ANSI и получил обозначение X3.203-1994.

Технология Fibre Channel обладает рядом преимуществ, которые делают этот стандарт удобным при организации обмена данными в группах компьютеров, а также при использовании в качестве интерфейса устройств массовой памяти, в локальных сетях и при выборе средств доступа к глобальным сетям. Одно из основных достоинств этой технологии - высокая скорость передачи данных.

FC-AL - лишь одна из трех возможных топологий Fibre Channel, которая, в частности, используется для систем хранения данных. Кроме нее, возможны топология точка-точка и звездообразная топология, построенная на основе коммутаторов и концентраторов. Сеть, которая построена на основе коммутаторов, соединяющих множество узлов (рис. 2), в терминологии Fibre Channel называется фабрикой (fabric).

Рис. 2. Фабрика на базе Fibre Channel.

В "петлю" FC-AL можно включить до 126 устройств с возможностью горячей замены. При использовании коаксиального кабеля расстояние между ними может достигать 30 м, в случае же волоконно-оптического кабеля оно увеличивается до 10 км. В основу технологии положена методика простого перемещения данных из буфера передатчика в буфер приемника с полным контролем этой и только этой операции. Для FC-AL совершенно неважно, как обрабатываются данные индивидуальными протоколами до и после помещения в буфер, вследствие чего тип передаваемых данных (команды, пакеты или кадры) не играет никакой роли.

Архитектурная модель Fibre Channel в деталях описывает параметры соединений и протоколы обмена между отдельными узлами. Эта модель может быть представлена в виде пяти функциональных уровней, которые определяют физический интерфейс, протокол передачи, сигнальный протокол, общие процедуры и протокол отображения. Нумерация идет от самого низкого аппаратного уровня FC-0, отвечающего за параметры физического соединения, до верхнего программного FC-4, взаимодействующего с приложениями более высокого уровня. Протокол отображения обеспечивает связь с интерфейсами ввода-вывода (SCSI, IPI, HIPPI, ESCON) и сетевыми протоколами (802.2, IP). В данном случае все поддерживаемые протоколы могут использоваться одновременно. Например, интерфейс FC-AL, работающий с IP- и SCSI-протоколами, пригоден как для обмена система-система, так и система-периферия. Это исключает потребность в дополнительных контроллерах ввода-вывода, существенно уменьшает сложность кабельной системы и, разумеется, общую стоимость.

Поскольку Fibre Channel - это низкоуровневый протокол, не содержащий команд ввода-вывода, то связь с внешними устройствами и компьютерами обеспечивается протоколами более высокого уровня, такими, как SCSI и IP, для которых FC-PH служит транспортом. Сетевые протоколы и протоколы ввода-вывода (например, команды SCSI) преобразуются в кадры протокола FC-PH и доставляются до адресата. Любое устройство (компьютер, сервер, принтер, накопитель), имеющее возможность обмениваться данными с использованием технологии Fibre Channel, называется N_порт (Node port), или просто узел. Таким образом, основное назначение Fibre Channel - возможность манипулировать протоколами высокого уровня, используя различную среду передачи и уже существующие кабельные системы.

Высокая надежность обмена при использовании Fibre Channel обусловлена двухпортовой архитектурой дисковых устройств, циклическим контролем передаваемой информации и заменой устройств в горячем режиме. Протокол поддерживает практически любые применяемые сегодня кабельные системы. Однако наибольшее распространение получили два носителя - оптика и витая пара. Оптические каналы используются для соединения между устройствами сети Fibre Channel, а витая пара - для соединения отдельных компонентов в устройстве (например, дисков в дисковой подсистеме).

Стандарт предусматривает несколько полос пропускания и обеспечивает скорость обмена 1, 2 или 4 Гбит/с. C учетом того, что для соединения устройств применяются два оптических кабеля, каждый из которых работает в одном направлении, при сбалансированном наборе операций "запись-чтение" скорость обмена данными удваивается. Иными словами, Fibre Channel работает в полнодуплексном режиме. В пересчете на мегабайты паспортная скорость Fibre Channel составляет соответственно 100, 200 и 400 Мбайт/с. Реально при 50%-ном соотношении операций "запись-чтение" скорость интерфейса достигает 200, 400 и 800 Мбайт/с. В настоящее время наиболее популярны решения Fibre Channel 2 Гбит/с, поскольку они имеют лучшее соотношение цена/качество.

Отметим, что оборудование для Fibre Channel можно условно разбить на четыре основные категории: адаптеры, концентраторы, коммутаторы и маршрутизаторы, причем последние широкого распространения пока не получили.

Решения на базе Fibre Channel обычно предназначены для организаций, которым необходимо поддерживать большие объемы информации в режиме online, ускорить операции обмена с первичной и вторичной внешней памятью для сетей с интенсивным обменом данных, а также при удалении внешней памяти от серверов на большие расстояния, чем это допускается в стандарте SCSI. Типичные области применения решений Fibre Channel - базы и банки данных, системы анализа и поддержки принятия решений, основанные на больших объемах данных, системы хранения и обработки мультимедийной информации для телевидения, киностудий, а также системы, где диски должны быть удалены на значительные расстояния от серверов из соображений безопасности.

Fibre Channel дает возможность отделить все потоки данных между серверами предприятия, архивирование данных и т. п. от локальной сети пользователей. В этом варианте возможности конфигурирования огромны - любой сервер может обращаться к любому разрешенному администратором системы дисковому ресурсу, возможен доступ к одному и тому же диску нескольких устройств одновременно, причем с очень высокой скоростью. В этом варианте архивирование данных тоже становится легкой и прозрачной задачей. В любой момент можно создать кластер, высвободив под него ресурсы на любой из систем хранения Fibre Channel. Масштабирование также довольно наглядно и понятно - в зависимости от того, каких возможностей не хватает, можно добавить либо сервер (который будет куплен исходя исключительно из его вычислительных возможностей), либо новую систему хранения.

Одна из весьма важных и нужных особенностей Fibre Channel - возможность сегментирования или, как еще говорят, зонирования системы. Разделение на зоны подобно разделению на виртуальные сети (Virtual LAN) в локальной сети - устройства, находящиеся в разных зонах, не могут "видеть" друг друга. Разделение на зоны возможно либо с помощью коммутируемой матрицы (Switched Fabric) или на основе указания адреса WWN (World Wide Name). Адрес WWN подобен MAC-адресу в сетях Ethernet, каждый FC-контроллер имеет свой уникальный WWN-адрес, который присваивает ему производитель, а любая правильная система хранения данных позволяет ввести адреса тех контроллеров или портов матриц, с которыми этому устройству разрешено работать. Разделение на зоны предназначено в первую очередь для повышения безопасности и производительности сетей хранения данных. В отличие от обычной сети, из внешнего мира нельзя получить доступ к закрытому для данной зоны устройству.

Технология FICON

Технология FICON (FIber CONnection) обеспечивает повышенную производительность, расширенные функциональные возможности и связь на больших расстояниях. Как протокол передачи данных она базируется на стандарте ANSI для систем Fibre Channel (FC-SB-2). Первый разработанный IBM стандарт общего назначения для связи между мэйнфреймами и внешними устройствами (такими, как диски, принтеры и ленточные накопители) основывался на параллельных подключениях, не слишком отличаясь от многожильных кабелей и многоштырьковых разъемов, которые применялись в те годы для подключения настольных принтеров к ПК. Множество параллельных проводов служило для переноса большего объема данных "за раз" (параллельно); в мэйнфреймах это называлось bus and tag.

Огромные по физическим размерам соединители и кабельная разводка были единственным способом связи до появления на рынке в 1990-х гг. технологии ESCON. Это была принципиально иная технология: в ней впервые вместо меди использовалось оптоволокно и данные передавались не параллельно, а последовательно. Все прекрасно понимали, что ESCON намного лучше и значительно быстрее, по крайней мере, на бумаге, но до всеобщего принятия технологии потребовалось множество испытаний и усилий по убеждению покупателей. Считается, что технология ESCON появилась во время застоя на рынке; к тому же поддерживающие этот стандарт устройства были представлены с заметным запозданием, поэтому технология и встретила прохладный прием, а для широкого ее распространения понадобилось почти четыре года.

С FICON история во многом повторилась. Впервые эту технологию IBM представила на серверах S/390 еще в 1997 г. Многим аналитикам было сразу понятно, что это во многом технически более продвинутое решение. Однако на протяжении нескольких лет FICON применяли практически исключительно для подсоединения ленточных накопителей (существенно улучшенное решение для целей создания резервных копий и восстановления) и принтеров. И лишь в 2001 г. IBM наконец оборудовала FICON свою систему хранения Enterprise Storage Server под кодовым названием Shark ("акула"). Это событие снова совпало с серьезным экономическим спадом, когда внедрение новых технологий на предприятиях замедлилось. Буквально через год возник ряд обстоятельств, которые способствовали ускоренному принятию FICON. На сей раз концепция оптоволокна была уже не нова, а технологии сетей хранения данных (SAN) получили широкое распространение как в мире мэйнфреймов, так и за его пределами.

Сейчас продолжается устойчивый рост рынка устройств хранения данных. Сегодняшние устройства, называемые директорами (director), с самого начала разработанные для поддержки ESCON, теперь поддерживают стандарт Fibre Channel, на основе этих же устройств развертывают FICON-решения. Как считают разработчики, FICON обеспечивает существенно большую функциональность по сравнению с Fibre Channel.

InfiniBand

Архитектура InfiniBand определяет общий стандарт для обработки операций ввода-вывода коммуникационных, сетевых подсистем и систем хранения данных. Этот новый стандарт привел к формированию торговой ассоциации InfiniBand Trade Association (IBTA, http://www.infinibandta.org). Проще говоря, InfiniBand - это стандарт архитектуры ввода-вывода нового поколения, который использует сетевой подход к соединению серверов, систем хранения и сетевых устройств информационного центра.

Технология InfiniBand разрабатывалась как открытое решение, которое могло бы заменить все остальные сетевые технологии в самых разных областях. Это касалось и общеупотребительных технологий локальных сетей (все виды Ethernet и сетей хранения, в частности, Fibre Channel), и специализированных кластерных сетей (Myrinet, SCI и т. д.), и даже подсоединения устройств ввода-вывода в ПК в качестве возможной замены шин PCI и каналов ввода-вывода, таких, как SCSI. Кроме того, инфраструктура InfiniBand могла бы служить для объединения в единую систему фрагментов, использующих разные технологии. Преимущество InfiniBand перед специализированными, ориентированными на высокопроизводительные кластеры сетевыми технологиями состоит в ее универсальности. Корпорация Oracle, например, поддерживает InfiniBand в своих кластерных решениях. Год назад HP и Oracle установили рекорд производительности в тестах TPC-H (для баз данных емкостью 1 Тбайт) в InfiniBand-кластере на базе ProLiant DL585 с использованием СУБД Oracle 10g в среде Linux. Летом 2005 г. IBM достигла рекордных показателей для TPC-H (для баз данных емкостью 3 Тбайт) в среде DB2 и SuSE Linux Enterprise Server 9 в InfiniBand-кластере на базе xSeries 346. При этом достигнутая стоимость одной транзакции оказалась почти вдвое ниже, чем у ближайших конкурентов.

Используя технику, называемую коммутируемой сетевой структурой, или коммутирующей решеткой, InfiniBand переносит трафик операций ввода-вывода с процессоров сервера на периферийные устройства и иные процессоры или серверы по всему предприятию. В качестве физического канала используется специальный кабель (линк), обеспечивающий скорость передачи данных 2,5 Гбит/с в обоих направлениях (InfiniBand 1х). Архитектура организована как многоуровневая, она включает четыре аппаратных уровня и верхние уровни, реализуемые программно. В каждом физическом канале можно организовать множество виртуальных каналов, присвоив им разные приоритеты. Для повышения скорости существуют 4-кратные и 12-кратные версии InfiniBand, в которых используется соответственно 16 и 48 проводов, а скорости передачи данных по ним равны 10 Гбит/с (InfiniBand 4х) и 30 Гбит/с (InfiniBand 12х).

Решения на основе архитектуры InfiniBand востребованы на четырех основных рынках: корпоративные центры данных (включая хранилища данных), высокопроизводительные компьютерные кластеры, встроенные приложения и коммуникации. Технология InfiniBand позволяет объединять стандартные серверы в кластерные системы, чтобы обеспечить центрам данных производительность, масштабируемость и устойчивость к сбоям - возможности, обычно предоставляемые только платформами высшего класса стоимостью в миллионы долларов. Кроме того, хранилища InfiniBand можно подключать к кластерам серверов, что позволяет связать все ресурсы хранения данных напрямую с вычислительными ресурсами. Рынок высокопроизводительных кластеров все время агрессивно ищет новые пути расширения вычислительных возможностей и потому может извлечь огромную выгоду из высокой пропускной способности, низкой латентности и прекрасной масштабируемости, предлагаемой недорогими продуктами InfiniBand. Встроенные приложения, такие, как военные системы, системы, работающие в реальном времени, обработка видеопотоков и т. д., получат огромные преимущества от надежности и гибкости соединений InfiniBand. Кроме того, рынок коммуникаций постоянно требует увеличения пропускной способности соединений, чего удается достичь благодаря 10- и 30-Гбит/с соединениям InfiniBand.

На физическом уровне протокола InfiniBand определены электрические и механические характеристики, в том числе оптоволоконные и медные кабели, разъемы, параметры, задающие свойства горячей замены. На уровне связей определены параметры передаваемых пакетов, операции, связывающие точку с точкой, особенности коммутации в локальной подсети. На сетевом уровне определяются правила маршрутизации пакетов между подсетями, внутри подсети этот уровень не требуется. Транспортный уровень обеспечивает сборку пакетов в сообщение, мультиплексирование каналов и транспортные службы.

Отметим некоторые ключевые особенности архитектуры InfiniBand. Для ввода-вывода и кластеризации используется единственная плата InfiniBand в сервере, что устраняет потребность в отдельных платах для коммуникаций и систем хранения данных (однако в случае типичного сервера рекомендуется установить две такие карты, сконфигурированные для обеспечения избыточности). Достаточно всего одного соединения с коммутатором InfiniBand на каждый сервер, IP-сеть или систему SAN (избыточность сводится к простому дублированию соединения с другим коммутатором). Наконец, архитектура InfiniBand разрешает проблемы соединений и ограничения полосы внутри сервера и при этом обеспечивает требуемую полосу и возможность коммуникаций для внешних систем хранения.

Архитектура InfiniBand состоит из следующих трех основных компонентов (рис. 3). HCA (Host Channel Adapter) устанавливается внутри сервера или рабочей станции, выполняющей функции главной (хоста). Он выступает как интерфейс между контроллером памяти и внешним миром и служит для подключения хост-машин к сетевой инфраструктуре на основе технологии InfiniBand. Адаптер HCA реализует протокол обмена сообщениями и основной механизм прямого доступа к памяти. Он подключается к одному или более коммутаторам InfiniBand и может обмениваться сообщениями с одним или несколькими TCA. Адаптер TCA (Target Channel Adapter) предназначен для подключения к сети InfiniBand таких устройств, как накопители, дисковые массивы или сетевые контроллеры. Он, в свою очередь, служит интерфейсом между коммутатором InfiniBand и контроллерами ввода-вывода периферийных устройств. Эти контроллеры не обязательно должны быть одного типа или принадлежать к одному классу, что позволяет объединять в одну систему разные устройства. Таким образом, TCA действует в качестве промежуточного физического слоя между трафиком данных структуры InfiniBand и более традиционными контроллерами ввода-вывода для иных подсистем, таких, как Ethernet, SCSI и Fibre Channel. Следует отметить, что TCA может взаимодействовать с HCA и напрямую. Коммутаторы и маршрутизаторы InfiniBand обеспечивают центральные точки стыковки, при этом к управляющему HCA может быть подключено несколько адаптеров TCA. Коммутаторы InfiniBand образуют ядро сетевой инфраструктуры. С помощью множества каналов они соединяются между собой и с TCA; при этом могут быть реализованы такие механизмы, как группировка каналов и балансировка нагрузки. Если коммутаторы функционируют в пределах одной подсети, образованной непосредственно подсоединенными устройствами, то маршрутизаторы InfiniBand объединяют эти подсети, устанавливая связь между несколькими коммутаторами.


Рис. 3. Основные компоненты SAN-сети на основе InfiniBand.

Большая часть развитых логических возможностей системы InfiniBand встроена в адаптеры, которые подключают узлы к системе ввода-вывода. Каждый тип адаптера разгружает хост от выполнения задач транспортировки, используя канальный адаптер InfiniBand, отвечающий за организацию сообщений ввода-вывода в пакеты для доставки данных по сети. В результате ОС на хосте и процессор сервера освобождаются от этой задачи. Стоит обратить внимание, что такая организация в корне отличается от того, что происходит при коммуникациях на основе протокола TCP/IP.

В InfiniBand определен весьма гибкий набор линий связи и механизмов транспортного уровня, обеспечивающий точную настройку характеристик сети SAN на базе InfiniBand в зависимости от прикладных требований, в число которых входят:

  • пакеты переменного размера;
  • максимальный размер единицы передачи: 256, 512 байт, 1, 2, 4 Кбайт;
  • заголовки локальной трассы уровня 2 (LRH, Local Route Header) для направления пакетов в нужный порт канального адаптера;
  • дополнительный заголовок уровня 3 для глобальной маршрутизации (GRH, Global Route Header);
  • поддержка групповой передачи;
  • вариантные и инвариантные контрольные суммы (VCRC и ICRC) для обеспечения целостности данных.

Максимальный размер единицы передачи определяет такие характеристики системы, как неустойчивость синхронизации пакетов, величина накладных расходов на инкапсуляцию и длительность задержки, используемые при разработке систем с несколькими протоколами. Возможность опускать сведения о глобальном маршруте при пересылке в пункт назначения локальной подсети снижает издержки локального обмена данными. Код VCRC рассчитывается заново каждый раз при прохождении очередного звена канала связи, а код ICRC - при получении пакета пунктом назначения, что гарантирует целостность передачи по звену и по всему каналу связи.

В InfiniBand определено управление потоком на основе разрешений - для предотвращения блокировок головного пакета (head of line blocking) и потерь пакетов, - а также управление потоком на канальном уровне и сквозное управление потоком. По своим возможностям управление на канальном уровне на основе разрешений превосходит широко распространенный протокол XON/XOFF, устраняя ограничения на максимальную дальность связи и обеспечивая лучшее использование линии связи. Приемный конец линии связи посылает передающему устройству разрешения с указанием объема данных, который можно получать надежно. Данные не передаются до тех пор, пока приемник не пошлет разрешение, свидетельствующее о наличии свободного пространства в приемном буфере. Механизм передачи разрешений между устройствами встроен в протоколы соединений и линий связи для гарантии надежности управления потоком. Управление потоком на канальном уровне организовано для каждого виртуального канала отдельно, что предотвращает распространение конфликтов передачи, свойственное другим технологиям.

С помощью InfiniBand связь с удаленными модулями хранения, сетевые функции и соединения между серверами будут осуществляться за счет подключения всех устройств через центральную, унифицированную структуру коммутаторов и каналов. Архитектура InfiniBand позволяет размещать устройства ввода-вывода на расстоянии до 17 м от сервера с помощью медного провода, а также до 300 м с помощью многомодового волоконно-оптического кабеля и до 10 км - с помощью одномодового волокна.

Сегодня InfiniBand постепенно снова набирает популярность в качестве технологии магистрали для кластеров серверов и систем хранения, а в центрах обработки данных - в качестве основы для соединений между серверами и системами хранения. Большую работу проводит в этом направлении организация, именуемая альянсом OpenIB (Open InfiniBand Alliance, http://www.openib.org). В частности, этот альянс ставит своей целью разработку стандартного программного стека поддержки InfiniBand с открытым кодом для Linux и Windows. Год назад поддержка технологии InfiniBand была официально включена в состав ядра Linux. Кроме того, в конце 2005 г. представители OpenIB продемонстрировали возможность использования технологии InfiniBand на больших дистанциях. Лучшим достижением в ходе демонстрации стала передача данных на скорости 10 Гбит/c на расстояние в 80,5 км. В эксперименте участвовали центры обработки данных ряда компаний и научных организаций. На каждом из конечных пунктов протокол InfiniBand инкапсулировался в интерфейсы SONET OC-192c, ATM или 10 Gigabit Ethernet без снижения пропускной способности.

1. Введение

Понятие телекоммуникации

Элементы теории информации

1.3.1 Определения информации.

1.3.2 Количество информации

1.3.3 Энтропия

1.4. Сообщения и сигналы

Тема 2. Информационные сети

2.2. Конфигурация ЛВС.

Тема 3.

3.2. Эталонная модель (OSI)

Тема 4.

4.1. Проводные линии связи

4.2. Оптические линии связи

Тема 5.

Тема 6..

Тема 7.

7.2. Адресация в IP сетях

7.3. Протокол IP

Лекция 1

Телекоммуникации. Понятие информации. Системы передачи информации. Измерение количества информации

Понятие телекоммуникации

Прежде чем рассматривать технологии передачи информации, рассмотрим сети (системы), в которых передаются различные виды информация. Информация (звук, изображение, данные, текст) передается в телекоммуникационных и компьютерных сетях.

Телекоммуникации (греч. tele - вдаль, далеко и лат. communication - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим, проводным и беспроводным каналам связи).

Телекоммуникационная система – совокупность технических объектов, организационных мер и субъектов , реализующие процессы соединения, передачи, доступа к информации.

Телекоммуникационные системы вместе со средой для передачи данных образуют телекоммуникационные сети .

Телекоммуникационные сети целесообразно разделять по типу коммуникаций (сети телефонной связи, сети передачи данных т. д.) и рассматривать при необходимости в различных аспектах (технико-экономическом, технологическом, техническом и др.).

Примеры телекоммуникационных сетей:

почтовая связь;

телефонная связь общего пользования (ТФОП);

– мобильные телефонные сети;

– телеграфная связь;

– интернет – глобальная сеть взаимодействия компьютерных сетей;

– сеть проводного радиовещания;

– сеть кабельного радиовещания;

– сеть телевизионного и радиовещания;

и другие информационные сети.

Для реализации связи на расстоянии телекоммуникационные системы используют:

– системы коммутации;

– системы передачи данных;

– системы доступа и управления каналами передачи;

– системы преобразования информации.

Система передачи данных - это совокупность каналов связи , центров коммутации , процессоров телеобработки, мультиплексоров передачи данных и программных средств установления и осуществления связи.

Под системой передачи данных (СПД) понимается физическая среда (ФС), а именно: среда, по которой распространяется сигнал (например, кабель, оптоволокно (световод), радиоэфир и т.д.).

Настоящий курс лекций посвящен изучению технологии передачи информации на физическом, канальном и сетевом уровнях.

Важнейшим аспектом курса является понятие информации. В настоящее время не существует единого определения информации как научного термина.

Вот некоторые определения информации:

1. Информация (от лат. informatio - «разъяснение, изложение, осведомлённость») - это сведения (сообщения, данные), независимо от формы их представления .

2. Информация - сведения о лицах, предметах, фактах, событиях, явлениях и процессах независимо от формы их представления.

Информация уменьшает степень неопределенности , неполноту знаний о лицах, предметах, событиях и т.д.

В теории информации мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации называется энтропия .

В широком смысле, в каком слово часто употребляется в быту, энтропия означает меру неупорядоченности системы; чем меньше элементы системы подчинены какому-либо порядку , тем выше энтропия .

Чем больше информации , тем больше упорядоченности системы , и наоборот, чем меньше информации , тем выше хаос системы, тем выше ее энтропия .

Связь: информация – сообщение - сигнал

Сообщение- это информация, выраженная в определенной форме и предназначенная для передачи от источника к пользователю (тексты, фото, речь, музыка, телевизионное изображение и др.). Информация является частью сообщения, представляющая новизну, т.е. то, что ранее не было известно.

Сигнал - это физический процесс, распространяющийся в пространстве и времени, параметры которого способны отображать (содержать) сообщение.

Для передачи информации используют сигнал , который является физической величиной и с его параметрами так или иначе связана информация.

Таким образом, сигнал – это изменяющаяся определенным образом физическая величина . В телекоммуникационных системах и сетях используются электрические, оптические, электромагнитные и другие виды сигналов .

Телефонные сети

Первый этап развития телефонных сетей - телефонные сети общего пользования (ТфОП или PSTN). ТфОП – это совокупность АТС, которые объединены аналоговыми или цифровыми линиями связи (магистралями) или соединительными линиями, и пользовательского (оконечного) оборудования, подключенного к АТС по абонентским линиям. ТфОП используют технологию коммутации каналов. Достоинством сетей коммутации каналов является возможность передачи аудиоинформации и видеоинформации без задержек. недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей.

Второй этап - телефонные сети ISDN. Современное поколение цифровой телефонной сети - ISDN. ISDN (Integrated Services Digital Network) - Цифровая сеть с интегрированными услугами , в которой по телефонным каналам передаются только цифровые сигналы, в том числе и по абонентским линиям.

В качестве линии ISDN BRI телефонная компания чаще использует медный кабель телефонной сети общего пользования (ТСОП), за счет чего снижается окончательная стоимость ISDN-линии.

Цифровые сети c интеграцией услуг ISDN можно использовать для решения широкого класса задач по передаче информации в различных областях, в частности: телефония; передача данных; объединение удаленных LAN; доступ к глобальным компьютерным сетям (Internet); передача трафика, чувствительного к задержкам (видео, звук); интеграция различных видов трафика.

Оконечным устройством сети ISDN могут быть: цифровой телефонный аппарат, отдельный компьютер с установленным ISDN-адаптером, файловый или специализированный сервер, мост или маршрутизатор LAN, терминальный адаптер с голосовыми интерфейсами (для подключения обычного аналогового телефона или факса), либо с последовательными интерфейсами (для передачи данных).

В Европе фактическим стандартом ISDN становится EuroISDN, который поддерживают большинство европейских телекоммуникационных провайдеров и производителей оборудования.

В настоящее время к сетям ТфОП и ISDN подключены центры коммутации сотовой связи (сотовые сети разных операторов соединены между собой), что обеспечивает звонки с сотовых телефонов на стационарные телефоны (ТфОП или ISDN) и наоборот.

Для связи сети Интернет (IP - сети) с ТфОП используются специальные аналоговые VoIP-шлюзы , а с ISDN применяются цифровые шлюзы VoIP . Голосовой сигнал из канала VoIP может непосредственно поступать на аналоговый телефон, подключенный к обычной телефонной сети ТфОП или на цифровой телефонный аппарат, подключенный к цифровой сети с интеграцией услуг ISDN.

В качестве первичных сетей в фиксированной телефонии используется медный кабель и PDH/SDH для объединения АТС .

Сотовая связь

Сотовая связь - это беспроводная телекоммуникационная система, состоящая из 1) сети наземных базовых приемо-передающих станций, 2) малогабаритных мобильных станций (сотовых радио-телефонов) и 3) сотового коммутатора (или центра коммутации мобильной связи). GSM (Global System for Mobile Communications)

Сотовая связь: 1G, 2G, 2,5G, 3G, 4G, 5G. GSM (Global System for Mobile Communications)

Телевизионные сети

Телевизионные сети (эфирные, кабельные, и спутниковые,) предназначены для передачи видео. Кабельное телевидение использует некоммутируемые каналы связи. Сначала видео было в аналоговом виде, затем, кабельное и спутниковое телевидение было переведено на цифровые сигналы. В настоящее время аналоговое телевещание прекращает свое существование, и все виды телевещания будут передавать сигналы в цифровом виде.

Цифровое телевещание основано на открытых стандартах и развивается под контролем консорциума DVB.

Наибольшее распространение получили системы:

· цифрового спутникового вещания - DVB-S (DVB-S2);

· цифрового кабельного вещания - DVB-C;

· цифрового эфирного вещания - DVB-T (DVB-T2);

· цифрового вещания для мобильных устройств - DVB-H ;

· телевидение по IP – DVB (IPTV) ;

· Интернет- телевидение или потоковое т вещание(Internet-TV ).

Что касается DVB-H, DVB-IPTV и Internet-TV , то это результат интеграции (конвергенции) различных сетей, а также терминальных устройств.

Мобильное телевидение DVB-H - это технология мобильного вещания, позволяющая передавать цифровой видеосигнал через Интернет на мобильные устройства, такие как КПК, мобильный телефон или портативный телевизор.

Важно отметить, что IPTV (IP через DVB или IP по MPEG) - это не телевидение, которое вещает через Интернет. IPTV напоминает обычное кабельное телевидение, только к терминалу абонента оно приходит не по коаксиальному кабелю, а по тому же каналу, что и интернет (ADSL модем или Ethernet).

IPTV представляет собой трансляцию каналов (обычно получаемых со спутников), преимущественно в форматах MPEG2/MPEG4 по транспортной сети провайдера, с последующим просмотром на компьютере с помощью одного из видеоплейеров - VLC-player либо IPTV - Player или на телевизоре с помощью специального специализированного устройства Set Top Box.

Потоковая трансляция видео (Internet-TV ). Модель вещания в Internet-TV существенно отличается от других концепций. Потоковым видео (Streaming Video) называют технологии сжатия и буферизации данных, которые позволяют передавать видео в реальном времени через Интернет.

Компьютерные сети

Первичные сети

В настоящее время в сети Internet используются практически все известные линии связи от низкоскоростных телефонных линий до высокоскоростных цифровых спутниковых каналов.

Каналы связи глобальных сетей организуются первичными сетями технологий FDM, PDH/SDH, DWDM (ДиДаблЮ ДиЭм).

Так как трафик IP сегодня является непременным атрибутом любой сети передачи данных и не поддерживать его просто невозможно, то для предоставления качественных услуг большинство крупных глобальных сетей, особенно сетей операторов связи, строится по четырехуровневой схеме.

Рис. 10. Четырехуровневая структура современной глобальной сети

Два нижних уровня не относятся к собственно пакетным сетям - это уровни первичной сети .

Первичные, или опорные, сети предназначены для создания коммутируемой инфраструктуры . На основе каналов, образованных первичными сетями, работают вторичные (компьютерные или телефонные ) сети.

На нижнем уровне работает наиболее скоростная на сегодняшний день технология Dense Wavelength Division Multiplexing (Плотное мультиплексирование с разделением по длине волны) DWDM, образующая спектральные скорости 10 Гбит/с и выше. Wavelength Division Multiplexing (WDM ) - технология оптического спектрального уплотнения , называемая обычно мультиплексированием с разделением по длине волны . К WDM (DWDM, CWDM) мультиплексору можно подключить практически любое оборудование: SONET/SDH, ATM, Ethernet.

На следующем уровне работает технология SDH (синхронная цифровая иерархия ). Стандарты SDH / PDH разработаны для высокоскоростных оптических сетей связи – сначала PDH (Plesiochronous Digital Hierarchy, плезиохронная цифровая иерархия ), а затем и более совершенная SDH (Synchronous Digital Hierarchy, синхронная цифровая иерархия ), распространенная в Европе, и ее американский аналог SONET. SONET/SDH предполагает использование метода временного мультиплексирования и синхронизацию временных интервалов трафика между элементами сети и определяет уровни скоростей прохождения данных и физические параметры.

Третий уровень образован сетью АТМ, основным назначением которой является создание инфраструктуры постоянных виртуальных каналов, соединяющих интерфейсы маршрутизаторов IP, работающих на третьем, верхнем уровне глобальной сети.

Уровень IP образует составную сеть и обеспечивает услуги конечным пользователям, передающим по глобальной сети свой IP-трафик транзитом или взаимодействующим по IP с Интернетом.

В Интернете применяются и "чистые" сети IP, называемые так из-за того, что под уровнем IP нет другой сети с коммутацией пакетов, такой как АТМ.

Структура "чистой" сети IP представлена на рис. ниже.

Рис. 11. Структура "чистой" сети IP

В такой сети цифровые каналы по-прежнему образуются инфраструктурой двух нижних уровней, а этими каналами непосредственно пользуются интерфейсы маршрутизаторов IP, без какого-либо промежуточного слоя.

Развитие коммуникационных сетей показало необходимость интеграции звука, изображений и других типов данных для возможности их совместной передачи. Так как дискретные каналы связи надежней и экономичней аналоговых каналов связи, то за основу были приняты именно они. В этой связи число аналоговых сетей быстро сокращается и они заменяются дискретными.

Softswitch

Softswitch (программный коммутатор)- гибкий программный коммутатор, один из основных элементов уровня управления сети связи следующего поколения NGN

Рис. 15. Softswitch в составе Сети Связи Общего Пользования

Softswitch - это устройство управления сетью NGN, призванное отделить функции управления соединениями от функций коммутации, способное обслуживать большое число абонентов и взаимодействовать с серверами приложений, поддерживая открытые стандарты. SoftSwitch является носителем интеллектуальных возможностей IP-сети, он координирует управление обслуживанием вызовов, сигнализацию и функции, обеспечивающие установление соединения через одну или несколько сетей.

Также немаловажной функцией программного коммутатора является связь сетей следующего поколения NGN с существующими традиционными сетями ТфОП, посредством сигнального(SG) и медиа-шлюзов (MG).

Технологии передачи информации

Тема 1. Основные понятияинформациии систем передачи информации

1. Введение

Понятие телекоммуникации

Элементы теории информации

1.3.1 Определения информации.

1.3.2 Количество информации

1.3.3 Энтропия

1.4. Сообщения и сигналы

1.5. Основные направления развития телекоммуникационных технологий

Тема 2. Информационные сети

2.1. Характеристики и классификация информационных сетей

2.2. Конфигурация ЛВС.

2.3. Базовые сетевые топологии

2.4. Сетевые технологии локальных сетей

2.5. Способы построения информационных сетей

Тема 3. Архитектуры информационных сетей

3.1. Многоуровневая архитектура информационных сетей

3.2. Эталонная модель (OSI)

Тема 4. Линии связи и каналы передачи данных

4.1. Проводные линии связи

4.2. Оптические линии связи

4.3. Беспроводные каналы связи

4.4. Спутниковые каналы передачи данных

Тема 5. Технологии передачи данных на физическом уровне

5.1 Основные функции физического уровня

5.2. Способы преобразования дискретных сигналов (модуляция и кодирования):

5.2.1. Аналоговая модуляция дискретных сигналов (АМ, ЧМ, ФМ)

5.2.2. Цифровое кодирование дискретных сигналов (импульсное и потенциальное)

5.3. Импульсно-кодовая модуляция аналоговых сигналов

5.4. Способы мультиплексирования:

5.4.1. Способ частотного мультиплексирования FDM

5.4.2. Мультиплексирование с разделением по времени TDM

5.4.3. По длине волны WDM (в оптоволоконных каналах связи)

Тема 6.Технологии передачи данных на канальном уровне .

6.1. Технологии передачи данных на канальном уровне в ЛВС и выделенных линиях (Ethernet, Token Ring, FDDI; SLIP, HDLC, PPP)

6.2. Технологии передачи данных на канальном уровне в глобальных сетях или транспортные технологии уровня магистрали (X.25, Frame Relay, ATM, MPLS, Ethernet; ISDN, PDH, SDH/SONET, WDM/DWDM)

Тема 7. Технологии передачи информации на сетевом уровне в составных сетях (IP-сетях)

7.1. Объединение сетей на основе сетевого уровня

7.2. Адресация в IP сетях

7.3. Протокол IP

7.4. Маршрутизация в сетях передачи данных.

7.5. Управление потоками данных.

Учебная программа курса объемом 108 академических часов состоит из одного содержательного (учебного) модуля объемом 3 кредитов (объем кредита ECTS составляет 36 академических часов) и состоит из аудиторных занятий и самостоятельной работы студентов.