Делаем сами Arduino Uno Mini. Arduino USB сделай сам (DIY) Бюджетный usb arduino своими руками

Arduino своими руками

Ну вот и настало время освоить платформу для duino самостоятельно. Для начала разберемся, что нам может потребоваться. Для начал было бы не плохо определиться, на базе чего мы будем делать наш экземпляр отладочной платы. Чтобы упростить изначальную задачу, я предлагаю использовать USB-(UART)TTL адаптер для загрузки скетчей. Это упростит нам жизнь в разы. лично я буду использовать дешевенький адаптер, заказанный в ныне несуществующем интернет-магазине, но все также рабочий.

При построении нашей Duino будем стараться использовать минимальное количество элементов. По мере освоения будем добавлять необходимые компоненты.

Для ознакомления найдем схемы различных платформ на официальном сайте:

На мой взгляд схемы хорошие, но неплохо было бы посмотреть уже проверенные реализации "самоделок", мне очень понравились 3 варианта:

Соорудим минимальную обвязку нашему устройству.На первом этапе деталей необходимо минимум:

Собственно сам МК atmega328P (в моем случае, хотя может использоваться и 168 и 8)

Кварц 16 MHz

Конденсатор 22pF x 2шт.

Резистор 10k

Кнопка сброса (любая, кстати не обязательный элемент)

Вот в принципе и все, что минимально необходимо для работы микроконтроллера. Я предлагаю все наши работы иллюстрировать и проектировать в очень не плохой программке Fritzing:

Ну вот, давайте разберемся, зачем нужны данные элементы. Кнопка позволяет перезапустить микроконтроллер, резистор R1 является подтягивающим резистором для кнопки. Кварц, C1 и C2 являются внешним тактовым генератором для контроллера.


Это необходимая и достаточная обвязка, но лично я настоятельно Вам рекомендую установить керамический конденсатор 100nF параллельно основному питанию микросхемы.

Ну вот и готова наша минимальная Duino. Для того, чтобы удобнее было использовать данный отладочный инструмент, я предлагаю наклеивать на корпус подсказку с распиновкой "атмеги". Мой вариант реализован в Corel Draw:

Для начала соберем схему нашей Duino на беспаечной макетной плате, вот что получилось у меня:

Для загрузки скетчей мы будем использовать USB - TTL адаптер, на фото мой уже изрядно потрепавшийся адаптер на базе микросхемы CP2102:

Но перед загрузкой скетчей необходимо залить бутлоадер в МК, иначе, он "не поймет", что мы от него хотим. Есть масса способов, но мы будем использовать простейший. При помощи замечательного программатора USBasp:

Для начала подключим нашу Duino к программатору, это очень просто, достаточно соединить контакты программатора с Duino:

GND - масса (22 нога)

MOSI - MOSI (d11)

5V - питание "+" (7 нога)

Затем Arduino IDE -> Сервис -> "Записать загрузчик":

В процессе записи загрузчика придется подождать около 2 минут. После этого нам могут выпасть разнообразные "warning", типа "can not set SCK period" - не пугаемся и идем дальше.

Ну чтож, вот мы и готовы записать тестовый скетч "Blink" в наш новоиспеченный Duino, но есть один момент, и на нем я хотел бы остановиться. Как мы уже говорили для записи скетчей используется последовательный порт, но в "обычной" жизни МК это цифровые порты 0 и 1. Все очень просто, мы уже залили бутлоадер, он инициализирует запись новой прошивки при включении в течении нескольких секунд, после этого Duino начинает выполнять программу, которая записана у нее в памяти.

Чтобы перевести Duino в режим "приема", необходимо перезагрузить МК, для этого мы сделали специальную кнопку, но нажать ее нужно строго в определенный момент, это совсем не подходит для нас. К счастью на переходниках есть специальный вывод "RST", который достаточно подключить к 1 ноге МК, чтобы автоматически перезагружать Duino перед загрузкой скетча. Подключение очень простое, (переходник - Duino):

GND - масса (22 нога)

RXD - подключить к TXD (3 нога)

TXD - подключить к КXD (2 нога)

5V - питание "+" (7 нога)

Как Вы заметили контакты приема/передачи подключаются перекрестно. И все бы хорошо, но есть одно "но": существует огромное множество переходников, а для автоматической перезагрузки МК необходимо внедрить конденсатор на 100pF в разрыв цепи RST - перезагрузка (1 нога). В некоторых адаптерах он есть, а в некоторых - увы нет. Тут нужно только проверять, в моем экземпляре встроенного конденсатора не оказалось. В итоге схема немного "усложнилась":

Ну что же, теперь можно загрузить скетч в памяти Duino и попробовать провести несколько экспериментов =) (на фото добавлены светодиоды - индикаторы загрузки скетча):

Arduino - это универсальная платформа для самоделок на микроконтроллерах. К ней есть множество шилдов (плат расширения) и датчиков. Это многообразие позволяет сделать целый ряд интересных проектов, направленных на улучшение вашей жизни и повышение её комфорта. Сферы применения платы безграничны: автоматизация, системы безопасности, системы для сбора и анализа данных и прочее.

Из этой статьи вы узнаете, что можно сделать интересного на Ардуино. Какие проекты станут зрелищными, а какие полезными.

Что можно сделать с помощью Arduino

Робот пылесос

Уборка в квартире - рутинное занятие и малопривлекательное, тем более на это нужно время. Сэкономить его можно, если часть хлопот по дому возложить на робота. Этого робота собрал электронщик из г. Сочи - Дмитрий Иванов. Конструктивно он получился достаточно качественным и не уступает в эффективности .

Для его сборки вам понадобятся:

1. Arduino Pro-mini, или любая другая подобная и подходящая по размерам...

2. USB-TTL переходник, если вы используете Pro mini. Если вы выбрали Arduino Nano, то он не нужен. Он уже установлен на плате.

3. Драйвер L298N нужен для управления и реверсирования двигателей постоянного тока.

4. Маленькие двигателя с редуктором и колесами.

5. 6 ИК-датчиков.

6. Двигатель для турбины (побольше).

7. Сама турбина, а вернее крыльчатка от пылесоса.

8. Двигателя для щеток (небольшие).

9. 2 датчика столкновения.

10. 4 аккумулятора 18650.

11. 2 преобразователя постоянного напряжения (повышающий и понижающий).

13. Контроллер для работы (заряда и разряда) аккумуляторов.

Система управления выглядит следующим образом:

А вот система питания:

Подобные уборщики развиваются, модели заводского изготовления обладают сложными интеллектуальными алгоритмами, но вы можете попытаться сделать свою конструкцию, которая не будет уступать по качеству дорогим аналогам.

Способны выдавать световой поток любого цвета, в них обычно используются светодиоды в корпусе которых размещено три кристалла светящиеся разным цветом. Для их управления продаются , их суть заключается в регулировании тока подаваемого на каждый из цветов светодиодной ленты, следовательно - регулируется интенсивность свечения каждого из трёх цветов (отдельно).

Вы можете сделать своими руками RGB-контроллер на Ардуино, даже более того, в этом проекте реализовано управление через Bluetooth.

На фото приведен пример использования одного RGB-светодиода. Для управления лентой потребуется дополнительный блок питания на 12В, тогда будут управлять затворами полевых транзисторов включенных в цепь. Ток заряда затвора ограничен резисторами на 10 кОм, они устанавливаются между пином Ардуино и затвором, последовательно ему.

С помощью микроконтроллера можно сделать универсальный пульт дистанционного управления управляемый с мобильного телефона.

Для этого понадобится:

    Arduino любой модели;

    ИК-приемник TSOP1138;

    ИК-светодиод;

    Bluetooth-модуль HC-05 или HC-06.

Проект может считывать коды с заводских пультов и сохранять их значения. После чего вы можете управлять этой самоделкой через Bluetooth.

Веб-камера устанавливается на поворотный механизм. Её подключают к компьютеру, с установленным программным обеспечением. Оно базируется на библиотеке компьютерного зрения - OpenCV (Open Source Computer Vision Library), после обнаружения программой лица, координаты его перемещения передаются через USB-кабель.

Ардуино даёт команду приводу поворотного механизма и позиционирует объектив камеры. Для движения камеры используется пара сервоприводов.

На видео изображена работа этого устройства.

Следите за своими животными!

Идея заключается в следующем - узнать, где гуляет ваше животное, это может вызвать интерес для научных исследований и просто для развлечения. Для этого нужно использовать GPS-маячок. Но чтобы хранить данные о местоположении на каком-нибудь накопителе.

При этом габариты устройства здесь играют решающую роль, поскольку животное не должно ощущать от него дискомфорт. Для записи данных можно использовать для работы с картами памяти формата Micro-SD.

Ниже приведена схема оригинального варианта устройства.

В оригинальной версии проекта использовалась плата TinyDuino и шилды к ней. Если вы не можете найти такую, вполне можно использовать маленькие экземпляры Arduino: mini, micro, nano.

Для питания использовался элемент Li-ion, малой ёмкости. Маленького аккумулятора хватает примерно на 6 часов работы. У автора в итоге все поместилось в обрезанную баночку из-под тик-така. Стоит отметить, что антенна GPS должна смотреть вверх, чтобы получать достоверные показания датчика.

Взломщик кодовых замков

Для взлома кодовых замков с помощью Ардуино понадобятся серво- и шаговый двигатель. Этот проект разработал хакер Samy Kamkar. Это достаточно сложный проект. Работа этого устройства изображена на видео, где автор рассказывает все подробности.

Конечно, для практического применения такое устройство вряд ли подойдет, но это отличный демонстрационный.

Ардуино в музыке

Это скорее не проект, а небольшая демонстрация какое применение нашла эта платформа у музыкантов.

Драм машина на Ардуино. Примечательна тем, что это не обычный перебор записанных сэмплов, а, в принципе, генерация звука с помощью «железных» приспособлений.

Номиналы деталей:

    Транзистор NPN-типа, например 2n3904 - 1 шт.

    Резистор 1 кОм (R2, R4, R5) - 3 шт.

    330 Ом (R6) - 1 шт.

    10 кОм (R1) - 1 шт.

    100 кОм (R3) - 1 шт.

    Электролитический конденсатор 3.3 мкФ - 1 шт.

Для работы проекта потребуется подключение библиотеки для быстрого разложения в ряд Фурье.

Это достаточно простой и интересный проект из разряда «можно похвастаться перед друзьями».

3 проекта роботов

Робототехника - одно из интереснейших направлений для гиков и просто любителей сделать что-нибудь необычное своими руками, я решил сделать подборку из нескольких интересных проектов.

BEAM-робот на Ардуино

Для сборки четырёхногого шагающего робота вам понадобятся:

    Для движения ног нужны сервомоторчики, например, Tower Hobbies TS-53;

    Кусок медной проволоки средней толщины (чтобы выдерживала вес конструкции и не гнулась, но и не слишком толстой, т.к. не имеет смысла);

    Микроконтроллер - AVR ATMega 8 или плата Ардуино любой модели;

    Для шасси в проекте указано, что использовалась Рамка Sintra. Это что-то вроде пластика, он сгибается в любую форму при нагревании.

В результате вы получите:

Примечательно то, что этот робот не ездит, а шагает, может перешагивать и заходить на возвышения до 1 см.

Этот проект мне, почему-то, напомнил робота из мультфильма Wall-e. Его особенностью является использование для зарядки аккумуляторов. Он перемещается подобно автомобилю, на 4-х колесах.

Его составляющие детали:

    Пластиковая бутылка подходящего размера;

  • Перемычки мама-папа;

    Солнечная панель с выходным напряжением в 6В;

    В качестве донора колес, двигателей и других деталей - машинка на радиоуправлении;

    Два сервопривода непрерывного вращения;

    Два обычных сервопривода (180 градусов);

    Держатель для батареек типа АА и для «кроны»;

    Датчик столкновений;

    Светодиоды, фоторезисторы, постоянные резисторы на 10 кОм - всего по 4 штуки;

    Диод 1n4001.

Вот основа - плата Ардуино с прото-шилдом.

Вот так выглядят запчасти от - колеса.

Конструкция почти в сборе, датчики установлены.

Суть работы робота заключается в том, что он едет на свет. Обилие нужно ему для навигации.

Это скорее ЧПУ станок, чем робот, но проект весьма занимательный. Он представляет собой 2-х осевой станок для рисования. Вот перечень основных компонентов, из которых он состоит:

    (DVD)CD-приводы - 2 шт;

    2 драйвера для шаговых двигателей A498;

    сервопривод MG90S;

    Ардуино Уно;

    Источник питания 12В;

    Шариковая ручка, и другие элементы конструкции.

Из привода оптических дисков используется блоки с шаговым двигателем и направляющей штангой, которые позиционировали оптическую головку. Из этих блоков извлекают двигатель, вал и каретку.

Управлять шаговым двигателем без дополнительного оборудования у вас не выйдет, поэтому используют специальные платы-драйверы, лучше, если на них будет установлен радиатор двигателя в момент пуска или смены направления вращения.

Полный процесс сборки и работы показан на этом видео.

Смотрите также 16 лучших Arduino проектов от AlexGyver:

Заключение

В статье рассмотрена лишь малая капля из всего того, что вы можете сделать на этой популярной платформе. На самом деле всё зависит от вашей фантазии и задачи, которую вы ставите перед собой.

Микроконтроллеры – отличная основа для большого количества устройств. По сути своей они напоминают компьютер: постоянная память; оперативная память; вычислительное ядро; тактовая частота.

Среди многих семейств и видов МК новички часто выбирают контроллеры AVR Atmega. Однако язык программирования может показаться сложным, поэтому преподаватель из Италии решил разработать простую и удобную плату для обучения.

Родилась Arduino ATmega8, на основе которой можно собрать очень удобное и простое устройство.

С этими платами от Ардуино вы получаете целый ряд преимуществ:

  • готовая разведенная печатная плата со всеми необходимыми компонентами и разъёмами;
  • микроконтроллеры Atmega;
  • возможность программировать без программаторов – через ЮСБ порт;
  • питание от любого источника 5-20 вольт;
  • простой язык программирования и возможность использования чистой C AVR без переделок платы и прошивки.
  • Частота ATmega8: 0-16 МГц
  • Напряжение ATmega8: 5 В
  • Частота ATmega8L: 0-8 МГц
  • Частоат ATmega8A: 0-16 МГц

В реальности почти все микроконтроллеры при рабочем напряжении в 5 вольт работают с частотой 16 мегагерц, если участвует внешний кварцевый резонатор. Если брать внутренний генератор, то частоты составят: 8, 4, 2 и 1 МГц.

Распиновка Arduino ATmega8

Ниже приводим распиновку атмега8, которую можно также найти на официальном сайте производителя:

Добавление устройств АТмега

Есть один нюанс по работе с эти чипом - нам нужно внести некоторые изменений в один файл, чтобы дальше можно было бы программировать микроконтроллеры Arduino ATmega8.

Вносим следующие изменения в файл hardware/arduino/boards.txt :

Atmega8o.name=ATmega8 (optiboot 16MHz ext) atmega8o.upload.protocol=arduino atmega8o.upload.maximum_size=7680 atmega8o.upload.speed=115200 atmega8o.bootloader.low_fuses=0xbf atmega8o.bootloader.high_fuses=0xdc atmega8o.bootloader.path=optiboot50 atmega8o.bootloader.file=optiboot_atmega8.hex atmega8o.bootloader.unlock_bits=0x3F atmega8o.bootloader.lock_bits=0x0F atmega8o.build.mcu=atmega8 atmega8o.build.f_cpu=16000000L atmega8o.build.core=arduino:arduino atmega8o.build.variant=arduino:standard ############################################################## a8_8MHz.name=ATmega8 (optiboot 8 MHz int) a8_8MHz.upload.protocol=arduino a8_8MHz.upload.maximum_size=7680 a8_8MHz.upload.speed=115200 a8_8MHz.bootloader.low_fuses=0xa4 a8_8MHz.bootloader.high_fuses=0xdc a8_8MHz.bootloader.path=optiboot a8_8MHz.bootloader.file=a8_8MHz_a4_dc.hex a8_8MHz.build.mcu=atmega8 a8_8MHz.build.f_cpu=8000000L a8_8MHz.build.core=arduino a8_8MHz.build.variant=standard ############################################################## a8_1MHz.name=ATmega8 (optiboot 1 MHz int) a8_1MHz.upload.protocol=arduino a8_1MHz.upload.maximum_size=7680 a8_1MHz.upload.speed=9600 a8_1MHz.bootloader.low_fuses=0xa1 a8_1MHz.bootloader.high_fuses=0xdc a8_1MHz.bootloader.path=optiboot a8_1MHz.bootloader.file=a8_1MHz_a1_dc.hex a8_1MHz.build.mcu=atmega8 a8_1MHz.build.f_cpu=1000000L a8_1MHz.build.core=arduino a8_1MHz.build.variant=standard ############################################################## a8noboot_8MHz.name=ATmega8 (no boot 8 MHz int) a8noboot_8MHz.upload.maximum_size=8192 a8noboot_8MHz.bootloader.low_fuses=0xa4 a8noboot_8MHz.bootloader.high_fuses=0xdc a8noboot_8MHz.build.mcu=atmega8 a8noboot_8MHz.build.f_cpu=8000000L a8noboot_8MHz.build.core=arduino a8noboot_8MHz.build.variant=standard

Таким образом, если мы перейдем в меню Сервис → Плата , то увидим устройства:

  • ATmega8 (optiboot 16MHz ext)
  • ATmega8 (optiboot 8 MHz int)
  • ATmega8 (optiboot 1 MHz int)
  • ATmega8 (no boot 8 MHz int)

Платы Arduino

Ардуино продаётся во множестве вариантов; главное, что объединяет платы, – это концепция готового изделия. Вам не нужно травить плату и паять все её компоненты, вы получаете готовое к работе изделие. Можно собирать любые устройства, не используя паяльник. Все соединения в базовом варианте выполняются с помощью макетной платы и перемычек.

Сердце платы – микроконтроллер семейства AVR. Изначально был применён микроконтроллер atmega8, но его возможности не безграничны, и плата подвергалась модернизации и изменениям. Стандартная плата, которая наиболее распространена у любителей – это плата версии UNO, существует много её вариаций, а её размеры сравнимы с кредитной карточкой.

Плата – полный аналог большего собрата, но в гораздо меньших размерах, версия arduino atmega168 была самой популярной и недорогой, но её сменила другая модель – arduino atmega328, стоимость которой аналогична, а возможности больше.

Следующей важной деталью является печатная плата. Разведена и запаяна на заводе, позволяет избежать проблем с её созданием, травлением и пайкой. Качество платы зависит от производителя конкретного экземпляра, но, в основном, оно на высоком уровне. Питание платы осуществляется с помощью пары линейных стабилизаторов, типа L7805 , или других LDO стабилизаторов напряжения.

Клеммная колодка – отличный способ сделать надёжное разъёмное соединение и быстро выполнить изменения в схеме прототипов ваших устройств. Для тех, кому не хватает стандартных разъёмов, есть более крупные и мощные платы, например, на atmega2560, у которой доступно полсотни портов для работы с периферией.

На фото изображена плата . На её основе можно собрать довольно сложного робота, систему умного дома или 3d-принтер на ардуино.

Не стоит думать, что младшие версии слабы, например, микроконтроллер atmega328, на котором построены модели Uno, nano, mini и другие, имеет вдвое больше памяти по сравнению с 168 моделью – 2 кб ОЗУ и 32 кб Flash памяти. Это позволяет записывать более сложные программы в память микроконтроллера.

Проекты на основе Arduino ATmega

Микроконтроллер в современной электронике – основа для любого устройства, начиная от простой мигалки на светодиодах, до универсальных измерительных приборов и даже средств автоматизации производства.

Пример 1

Можно сделать тестер с 11 функциями на микроконтроллере atmega32.

Устройство имеет крайне простую схему, в которой использовано немногим более дюжины деталей. Однако вы получаете вполне функциональный прибор, которым можно производить измерения. Вот краткий перечень его возможностей:

  1. Прозвонка цепи с возможностью измерять падение напряжения на переходе диода.
  2. Омметр.
  3. Измеритель ёмкости.
  4. Измерение активного сопротивления конденсатора или ESR.
  5. Определение индуктивности.
  6. Возможность счёта импульсов.
  7. Измерение частоты – пригодится в диагностике, например, для проверки ШИМ источника питания.
  8. Генератор импульсов – тоже полезен в ремонте.
  9. Логический анализатор позволит просмотреть содержимое пачек цифровых сигналов.
  10. Тестер стабилитронов.

Пример 2

Для радиолюбителей будет полезно иметь качественное оборудование, но станция стоит дорого. Есть возможность собрать паяльную станцию своими руками, для этого нужна плата Arduino, имеющая в своем составе микроконтроллер atmega328.

Пример 3

Для продвинутых радиолюбителей есть возможность собрать более чем бюджетный осциллограф. Мы опубликуем данный урок в дальнейших статьях.

Для этого вам понадобится:

  1. Arduino uno или atmega
  2. Tft дисплей 5 дюйма.
  3. Небольшой набор обвязки.

Или его упрощенный аналог на плате Nano и дисплее от nokia 5110.

Такой осциллографический пробник станет полезным для автоэлектрика и мастера по ремонту радиоэлектронной аппаратуры.

Пример 4

Бывает, что управляемые модули удалены друг от друга или возможностей одной ардуино не хватает – тогда можно собрать целую микроконтроллерную систему. Чтобы обеспечить связь двух микроконтроллеров стоит использовать стандарт RS 485.

На фото приведен пример реализации такой системы и ввода данных с клавиатуры.

Цветомузыка на микроконтроллере Arduino ATmega8

Для школьной дискотеки можно собрать ЦМУ на 6 каналов.

Транзисторы VT1-VT6 нужно подобрать с учетом мощности ваших светодиодов. Это силовые компоненты – они нужны, потому что мощности микроконтроллера не хватит, чтобы запустить мощные лампы или светодиоды.

Если вы хотите коммутировать сетевое напряжение и собрать цветомузыку на лампах накаливания, вместо них нужно установить симисторы и драйвер. Дополнить каждый канал ЦМУ вот такой конструкцией:

Ардуино своими руками

Atmega2560 – хоть и мощный и продвинутый контроллер, но проще и быстрее собрать первую плату на atmega8 или 168.

Левая часть схемы – это модуль связи по USB, иначе говоря, USB-UART/TTL конвертер. Его, вместе с обвязкой, можно выбросить из схемы, для экономии места, собрать на отдельной плате и подключать только для прошивки. Он нужен для преобразования уровней сигнала.

DA1 – это стабилизатор напряжения L7805. В качестве основы можно использовать целый ряд avr микросхем, которые вы найдете, например, серии, arduino atmega32 или собрать arduino atmega16. Для этого нужно использовать разные загрузчики, но для каждого из МК нужно найти свой.

Можно поступить еще проще, и собрать всё на беспаечной макетной плате, как это показано здесь, на примере 328-й атмеги.

Микроконтроллеры – это просто и весело – вы можете сделать кучу приятный и интересных вещей или даже стать выдающимся изобретателем, не имея при этом ни образования, ни знаний о низкоуровневых языках. Ардуино – шаг в электронику с нуля, который позволяет перейти к серьезным проектам и изучению сложных языков, типа C avr и других.

На мой взгляд собирать UNO именно в том виде, в котором она представлена в оригинале нет смысла. Я всегда пользуюсь вот этой схемой:

Тут все вообще без гемора – просто 1 микросхема и кварц. Правда, в отличие от Arduino UNO, нет защиты по питанию и USB – соответственно заливка скетчей немного сложнее. Давайте разбираться.

Копируем Arduino uno – питание

Во-первых в этой схеме только одно напряжение – то, которым питаешь микроконтроллер. В arduino uno есть стабилизатор – ей подаешь 5 вольт, она еще и 3.3 выдает на соседний пин. За всю мою практику мне ни разу не понадобилось сразу и 5, и 3.3 вольта в одной схеме. То есть используется либо 5, либо 3.3, но никогда вместе. Все девайсы, экраны и датчики, рассчитанные на 3.3, всегда втыкались 5 вольт и все работало. Естественно надо прочитать даташит (документацию) на эти самые датчики, возможно у вас что-то мегачувтсвительное к входному напряжению и ему реально нужно 3.3 вольта. Тогда можно поставить стабилизатор напряжения и снизить до 3.3 вольт. Как обычно есть пара способов:

Вообще с питанием много всяких извращенных схем, но это основные подходы.

USB для нашего UNO

Тут тоже есть два подхода. Есть такая штука, называется ISP:


Это такой разъем)) Для того, чтобы заставить работать наш новый UNO, нужен микроконтроллер. Если ты просто пойдешь в магаз и купить Atmega326 ты конечно будешь молодец, но работать сразу это все не будет – в нее надо зашить загрузчик Arduino. для этого как ни странно нужна вторая Arduino. Уже рабочая Хз где ты ее достанешь, купишь в Китае или попросишь у друга погонять. В принципе подойдет любая. Назовем ее условно программатор. А подключать надо так:

pin name: not-mega: mega(1280 and 2560) reset: 10: 53 MOSI: 11: 51 MISO: 12: 50 SCK: 13: 52

pin name : not - mega : mega (1280 and 2560 )

reset : 10 : 53

MOSI : 11 : 51

MISO : 12 : 50

SCK : 13 : 52

Если вы достали где-то в качестве программатора Arduino Mega то используйте для подключения последний столбец. Если программатором служат другие ардуины – тогда второй. В первом столбце указаны ноги вашей новой купленной атмеги. Далее в рабочую ардуино (программатор) заливаем скетч из образцов с названием ArduinoISP:

И вот тут у нас два варианта:

  1. Можно прошить загрузчик и тогда в дальнейшем наш микроконтроллер можно прошивать через Serial порт и вторая ардуина-программатор нам больше не нужна.
  2. Либо можно прошивать через программатор сразу наш скетч без загрузчика – и тогда у нас после запуска будет все работать быстрее на пару секунд. Это делается с помощью меню файл –> загрузить через программатор

Если с вторым вариантом все ясно.. То первый требует разъяснений. Жмем Инструменты – Программатор – Arduino. А потом Инструменты – Записать загрузчик.

После этого отключаем Arduino и теперь нам понадобится USB to ttl serial Converter. После того, как мы его достали, его надо подключить к reset, d0 (rx), d1(tx) нашей только что прошитой атмеги.

Суть та же, только не забудьте добавить резистор и конденсатор на reset (см. первый вариант).

После этого все будет прошиваться точно так же, как и обычная ардуина.

С практической точки зрения – проще купить готовую плату и не заморачиваться, но навыки, полученные при изготовлении данной поделки, в дальнейшем могут пригодиться.

Шаг 1: Необходимые радиодетали и инструменты

Процесс изготовления любой самоделки начинается с подготовки материально-технической базы.

Радиодетали:

  • ATmega328;
  • 2 электролитических конденсатора ёмкостью 10 uf (микрофарад);
  • 2 конденсатора в круглом керамическом корпусе ёмкостью 22 pf (пикофарада);
  • регулятор напряжения L7805;
  • кварцевый резонатор 16 MГц;
  • тактовая кнопка;
  • светодиоды;
  • панелька для микросхемы;
  • регулятор напряжения LM1117T-3.3 (по желанию);
  • 2 танталовых конденсатора ёмкостью 10 uf (микрофарад) (по желанию).

Инструменты:

  • Паяльник;
  • Мультиметр.

Шаг 2: Описание

После того, как приобрели все радиодетали, пришло время произвести монтаж, но перед этим нужно сказать пару слов насчёт atmega328. Существуют два типа микросхем: с boot-loader (бутлоударом, он же загрузчик) и без него. Разница в цене микросхем не значительная, но если приобретёте «микруху» с бутлоударом, то сможете проскочить несколько шагов из данной статьи. Если же купите без загрузчика, то необходимо в точности выполнить всё, что описано в последующих шагах.

Загрузчик необходим для загрузки кода с Arduino IDE в микросхему.

Шаг 3: Загружаем «загрузчик»

Для этого шага будет нужна плата Arduino UNO. Следуя схеме, припаяем радиодетали на монтажную плату. На данной этапе, нет необходимости включать в схему регуляторы напряжения, так как Arduino обеспечит необходимое напряжение.

Настроим плату Аrduino UNO, как ISP. Это нужно сделать для того, чтобы плата прошила микроконтроллер ATmega, а не саму себя. Не подключайте ATmega, пока идёт загрузка кода.

  • Подключим Arduino к ПК;
  • Откроем Arduino IDE;
  • Откроем > Примеры > Arduino ISP;
  • Загрузим прошивку.

Шаг 4:

После того, как все элементы схемы соединены воедино, открываем IDE.

  • Выбираем Arduino328 из Tools > Board
  • Выбираем Arduino, как ISP из Tools > Programmer
  • Выбираем Burn Bootloader

После успешной записи, вы получите «Done burning bootloader».

Шаг 5: Добавляем 5В регулятор

После прошивки загрузчика, завершим изготовлении платы. Регулятор напряжения L7805 – это важная деталь схемы. Распиновка следующая (смотрим на лицевую сторону): крайняя левая нога – вход, центральная нога – земля, а крайняя правая нога – выход.

Следуя схеме присоединим регулятор напряжения к arduino.

Шаг 6: 3.3 В регулятор напряжения

Данный шаг выполняется по желанию. Регулятор используется только для питания внешних шилдов/модулей, которым нужно 3.3В.

Шаг 7: Первая прошивка

Как только завершим сбоку, пришло время загрузить первый код. Для прошивки удалим родной микроконтроллер ATmega 328 с платы UNO и заменим его новой микрухой. Как только загрузим код, поменяем микросхемы местами.

На этом всё! Спасибо за внимание!