Интеллектуальное зарядное устройство для литиевых аккумуляторов. Литий-ионные аккумуляторы: как правильно заряжать

Это простое зарядное устройство для литий-ионных аккумуляторов , а так же и литий-полимерных аккумуляторов построено на широко известном LM317.

Процесс заряда показан на графике ниже. В первый момент процесса зарядки ток заряда постоянен, при достижении целевого уровня напряжения (Umax) на аккумуляторе, зарядное устройство переходит в режим, когда напряжение остается постоянным, а ток асимптотически стремится к нулю.

Выходное напряжение литий-ионных и литий-полимерных аккумуляторов, как правило, составляет 4,2В (для некоторых типов 4,1 В). Обычно, выходное напряжение не совпадает с номинальным напряжением которое составляет 3,7В (иногда 3,6В).

Не рекомендуется заряжать данный тип аккумуляторов до полных 4,2В, так как это уменьшает срок службы аккумулятора. Если уменьшить выходное напряжение до 4,1В, емкость падает на 10%, но в тоже время срок службы (количество циклов) увеличится почти в два раза. При эксплуатации аккумуляторов, нельзя доводить номинальное напряжение ниже 3,4…3,3В.

Описание зарядного устройства

Как уже было сказано, зарядка построена на стабилизаторе LM317. Li-Ion и Li-Pol довольно требовательны к точности зарядного напряжения. Если вы хотите, произвести заряд до полного напряжения (обычно 4,2В), то необходимо выставить это напряжение с точностью плюс/минус 1%. После зарядки до 90% емкости (4,1В), точность может быть немного меньше (около 3%).

Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения. Целевое напряжение устанавливается R2. Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно, стабилизировать его с помощью шунтирующего резистора Rx и NPN транзистора (VT1).

Если падение напряжения на резисторе Rx достигает примерно 0,95В, то транзистор начинает открываться. Это уменьшает напряжение на контакте «Общий» стабилизатора Lm317 и тем самым стабилизируется ток.

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путем изменения сопротивления Rx. Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax. Указанное на схеме значение резистора Rx соответствует току в 200мА.

Входное напряжение питания зарядного устройства должно находиться в диапазоне от 9 до 24 вольт. Превышение данного уровня увеличивает потери мощности в цепи LM317, снижение — нарушит правильную работу (нужно пересчитывать падение напряжения на шунте и минимальное напряжения на контакте «Общий»). Транзистор VT1 можно заменить на BC237, KC507, C945 или отечественный

У многих, наверное, возникает проблема с зарядкой Li-Ion аккумулятора без контроллера, у меня возникла такая ситуация. Достался убитый ноутбук, в аккумуляторе 4 банки SANYO UR18650A оказались живые.
Решил заменить в светодиодном фонарике, вместо трех батареек ААА. Встал вопрос об их зарядке.
Покопавшись в инете нашел кучу схемок, но с деталями у нас в городе туговато.
Пробовал заряжать от зарядки сотового, проблема в контроле заряда, нужно постоянно следить за нагревом, чуть начинает нагреваться нужно отключать от зарядки иначе аккумулятору каюк в лучшем случае, а то и можно устроить пожар.
Решил сделать самостоятельно. Купил в магазине постельку под аккумулятор. На барахолке купил зарядку. Для удобства отслеживания окончания заряда желательно найти с двухцветным светодиодом который сигнализирует о конце заряда. Он переключается с красного на зеленый при окончании зарядки.
Но можно и обычную. Зарядку можно заменить на шнур USB, и заряжать от компьютера или зарядки с USB выходом.
Моя зарядка только для аккумуляторов без контроллера. Контроллер я взял от старого аккумулятора сотового телефона. Она следит за тем, чтобы аккумулятор не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания.
На нем стоят микросхема DW01 и сборка двух MOSFET-транзисторов (M1,M2) SM8502A. Есть и с другими маркировками, но схемы подобны этой, и работает аналогично.

Контроллер заряда от аккумулятора сотового телефона.


Схема контроллера.


Ещё одна схема контроллера.
Главное не перепутать полярность припайки контроллера с постелькой и контроллера с зарядкой. На платке контроллера указаны контакты «+» и «-» .



В постельке возле плюсового контакта желательно сделать явно заметный указатель, красной краской или самоклеющейся пленкой, во избежание переполюсовки.
Собрал всё воедино и вот что получилось.



Заряжает замечательно. При достижении напряжения 4,2 вольта контроллер отключает аккумулятор от зарядки, и переключается светодиод с красного на зелёный. Зарядка закончена. Заряжать можно и другие Li-Ion аккумуляторы, только применить другую постельку. Всем удачи.

Сегодня у многих пользователей скопилось по несколько рабочих и неиспользуемых литиевых аккумуляторов, появляющихся при замене мобильных телефонов на смартфоны.

При эксплуатации аккумуляторов в телефонах со своим зарядным устройством, благодаря использованию специализированных микросхем для контроля заряда, проблем с зарядом практически не возникает. Но при использовании литиевых аккумуляторов в различных самоделках возникает вопрос, как и чем заряжать такие аккумуляторы. Некоторые считают, что литиевые аккумуляторы уже содержат встроенные контроллеры заряда, но на самом деле в них встроены схемы защиты, такие аккумуляторы называют защищёнными. Схемы защиты в них предназначены в основном для защиты от глубокого разряда и превышения напряжения при зарядке выше 4,25В, т.е. это аварийная защита, а не контроллер заряда.

Некоторые «самодельщики» на сайте тут - же напишут, что за небольшие деньги можно заказать специальную плату из Китая, с помощью которой можно зарядить литиевые аккумуляторы. Но это только для любителей «шопинга». Нет смысла покупать то, что легко собирается за несколько минут из дешевых и распространенных деталей. Не нужно забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит такого удовлетворения, как сделанное своими руками .

Предлагаемое зарядное устройство способен повторить практически каждый. Данная схема весьма примитивна, но полностью справляется со своей задачей. Все что требуется для качественной зарядки Li-Ion аккумуляторов, это стабилизировать выходное напряжение зарядного устройства и ограничить ток заряда.

Зарядное устройство отличается надежностью, компактностью и высокой стабильностью выходного напряжения, а, как известно, для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Схема зарядного устройства для li-ion аккумулятора

Схема зарядного устройства выполнена на регулируемом стабилизаторе напряжения TL431 и биполярном NPN транзисторе средней мощности. Схема позволяет ограничить зарядный ток аккумулятора и стабилизирует выходное напряжение.

В роли регулирующего элемента выступает транзистор Т1. Резистор R2 ограничивает ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать резистор мощностью 1 вт. Другие резисторы могут иметь мощность 125 или 250 мВт.

Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора. Для рассматриваемого случая, зарядки аккумуляторов от мобильных телефонов, можно применить отечественные или импортные NPN транзисторы средней мощности (например, КТ815, КТ817, КТ819). При высоком входном напряжении или использовании транзистора малой мощности, необходимо транзистор установить на радиатор.

Светодиод LED1 (выделен красным цветом в схеме), служит для визуальной сигнализации заряда аккумулятора. При включении разряженного аккумулятора, индикатор светится ярко и по мере заряда тускнеет. Свечение индикатора пропорционально току заряда аккумулятора. Но следует учесть, что при полном затухании светодиода, батарея все еще будет заряжаться током менее 50ма, что требует периодического контроля над устройством для исключения перезаряда.

Для повышения точности контроля окончания заряда, в схему зарядного устройства добавлен дополнительный вариант индикации заряда аккумулятора (выделен зеленым цветом) на светодиоде LED2, маломощном PNP транзисторе КТ361 и датчике тока R5. В устройстве возможно использование любого варианта индикатора в зависимости от требуемой точности контроля заряда аккумулятора.

Представленная схема предназначается для заряда только одного Li-ion аккумулятора. Но это зарядное устройство можно использовать и для заряда других видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения и ток зарядки.

Изготовление зарядного устройства

1. Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем зарядное устройство на монтажной плате.

Диод в цепи питания аккумулятора (минусовая шина – синий провод) предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства.

3. Настройка выходного напряжения схемы.
Подключаем схему к источнику питания напряжением 5…9 вольт. Подстроечным сопротивлением R3 устанавливаем выходное напряжение зарядного устройства в пределах 4,18 – 4,20 вольта (при необходимости, в конце настройки измеряем его сопротивление и ставим резистор с нужным сопротивлением).

4. Настройка зарядного тока схемы.
Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока (100…300 ма). При сопротивлении R2 менее 3 ом светодиод может не светится.

5. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый размер из универсальной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки.

6. Монтаж отлаженной схемы на рабочую плату
Переносим детали с монтажной платы на рабочую, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки основательно проверяем монтаж.

В прошлый раз я рассматривал вопрос о замене никель-кадмиевых NiСd аккумуляторов шуруповерта на литий-ионные. Теперь остался вопрос зарядки этих аккумуляторов. Литий ионные аккумуляторы формата 18650 обычно могут заряжаться до напряжения 4,20 В на ячейку с допустимым отклонением не больше 50 милливольт потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может находится в пределах от 0,1С до 1С(С-емкость аккумулятора). Лучше выбрать это значение согласно даташиту на конкректный аккумулятор. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A. Смотрим даташит-ток зарядки -1,5А.


Наиболее правильным будет провести заряд литиевых аккумуляторов в два этапа по методу CC/CV (constant current, constant voltage-постоянный ток, постоянное напряжение). Первый этап- должен обеспечен постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для аккумулятора с емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА.. Второй этап - зарядка аккумулятора постоянным напряжением, ток постоянно снижается. Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25 В. Процесс заряда будет законченным когда току падет до 0.05-0.01С.
На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.
Принимая во внимание вышесказанное применил готовые электронные модули с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.



Характеристики платы на XL4015E1.
Максимальный выходной ток до 5 Ампер.
Напряжение на выходе: 0.8 В-30 Вольт.
Напряжение на входе: 5 В-32 Вольт.
Плата на LM2596 имеет аналогичные параметры, только ток чуть меньше - до 3 Ампер.
Плату для управление зарядом литий-ионной батареи выбрана ранее. В качестве источника питания можно применить любой со следующими параметрами-выходное напряжение не ниже 18 Вольт (для схемы 4S), ток не ниже 2-3 Ампер. В качестве первого примера построения зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 220\12 Вольт, 3 Ампера.



Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без прегруза 1,9 Ампер. Также измерил температуру на радиаторе транзистора-40 градусов Цельсия. Вполне неплохо-нормальный режим.


Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.


На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 Вольт(небольшой запас от 16,8 В для падения на плате CCCV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.
Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 Вольт. Другим подстроечным резистором выставляем ток 1,5 Ампера, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43 градусов Цельсия, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.
Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

У меня есть еще штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-кадмиевых аккумуляторов. Хотелось использовать это штатное зарядное чтобы заряжать и никель-кадмиевых аккумуляторы и литий-ионные.


Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CCCV.
Напряжение холостого хода на выходе штатное зарядного было 27 Вольт, это вполне подходит для нашей зарядной платы. После подключил так же как и варианте с адаптером.


Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).
Саму плату CCCV я поместил в подходящую пластмассовую коробку, выведя провода наружу.



Если у вас штатное зарядное на трансформаторе то можно подключить плату CCCV после диодного мостика выпрямителя.
Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.
Всем желаю здоровья и успехов в покупках и жизни.
Подробнее процесс работы с зарядным устройством для переделанного шуруповерта можно посмотреть в видео

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +26 Добавить в избранное Обзор понравился +28 +51

Цена: $0.69

Перейти в магазин

Здравствуйте, друзья! Как и обещал, выкладываю обзор миниатюрной зарядной платы. Она предназначена для заряда литий-ионных аккумуляторов. Основная ее фишка в том, что она не «привязана» в какому-либо конкретному типоразмеру - 186500, 14500 и т.д. Подойдет абсолютно любой литий-ионный аккумулятор, к которому можно подключить «плюс» и «минус».

Плата совсем миниатюрная.

Не смотря на наличие USB-micro входа для подачи питания, входные «плюс» и «минус» продублированы еще и клеммами.

Это очень даже неплохой плюс. Объясню почему.

Во-первых, можно взять какой-нибудь блок питания припаять провода напрямую к плате. Поможет в том случае, если USB-micro вход по каким-то причинам окажется неисправным.

Во-вторых, можно взять, скажем, 3 платы, соединить три входных плюса и три входных минуса (получится параллельное соединение), и тогда от одного блока питания можно будет заряжать одновременно 3 аккумулятора. А если хочется зарядить аккумуляторы побыстрее, то можно будет подключить второе и даже третье зарядное устройство.

Выходы на аккумулятор, кстати, тоже можно запараллелить.

Т.е., если соединить те же 3 платы не только на входе, но и на выходе, то можно получить очень мощное зарядное устройство для литий-ионных аккумуляторов. В данном случае это будет зарядка на 3А.

Но один достаточно смешной момент все-таки есть - отверстия на выходных плюсе и минусе - разного диаметра. Почему так - не знаю.

Ну да ладно, это мелочь. Главное чтоб она нормально работала. Кстати, именно этим мы сейчас и займемся - проверкой работоспособности данной платы.

Тест 1. Отсечка по факту полного заряда.

Этот тест я проводил на двух аккумуляторах - оригинальном Панасонике на 3400mAh и на фейковом ноунейме на 5000mAh (а если серьезно - 450mAh).

Синий огонек на плате свидетельствует о том, что заряд аккумулятора завершен. Мультиметр при этом показывает 4,23В. Да, я не спорю, 4,25В на заряженном аккумуляторе это как бы тоже в пределах нормы, но… Вообще выше 4,2В как бы не желательно. А может что-то изменится, если плату отключить?

Почти те самые идеальные 4,2В. Т.е. аккумулятор все-таки заряжен «без излишеств». Но что будет, если Вы забыли снять аккумулятор сразу после его полного заряда? Обратите внимание, на приведенном выше фото почти 6 часов вечера. Подключим зарядку обратно и оставим в таком состоянии на несколько часов.

(спустя 5 с чем-то часов)

Я снова отключил плату, чтоб она не мешала измерениям напряжения на аккумуляторе. И что в итоге?

Никакого повышения напряжения на аккумуляторе не произошло. Может дело в емкости аккумулятора? Что будет, если вместо оригинальных Панасоников зарядить фейковые ноунеймы на 450mAh реальной емкости? Так и сделал - сначала разрядил один такой аккумулятор, а потом поставил заряжаться. И уснул.

А на утро… Ну что ж, отключаем зарядную плату и…

Итак, мы выяснили, что отсечка заряда происходит при достижении напряжения в 4,2В. Но на фото напряжение ниже. Т.е. после окончания заряда никакой «дозаправки» не происходит. Поясню. Некоторые зарядные устройства после окончания заряда продалжают подавать небольшой ток (буквально 10-15mA) для того, чтоб компеенсировать саморазряд аккумулятора. Здесь этого не происходит. Но это не страшно. Избыточный заряд - гораздо страшнее.

Подведем черту:
- заряжает до напряжения 4,19В и производит отсечку
- компенсация саморазряда не производится.

Проще говоря, тест пройден с успехом.

Тест 2. Ток.

Китаяц обещал, что данная плата способна заряжать током до 1А. Проверим? Для этого я почти разрядил один из имеющихся Панасоников (примерно до 3,3В), а потом поставил на зарядку. И что мы имеем?

Наблюдательные спросят - «а зачем ты USB-тестер из цепи убрал? ты ему не доверяешь что ли?». Друзья, этот USB-тестер хорош для замера емкости аккумулятора, но для замера мощности зарядной платы он не подходит. И вот почему. Буквально сразу же я встроил uSB-тестер обратно в цепь и…

… и сила тока заряда упала на целых 200mA. Именно по этой причине я ВСЕГДА ставлю дизлайки к тем видео, где чувак берет USB-зарядку, втыкает туда такой тестер, дает нагрузку, токоотдача не соответствует заявленной (например, заявлено 2A, а отдача составляет 1,5A), а потом еще и диспут с продавцом открывает, мол, как это так, мне 1,5А мало, мне 2А подавай! Я не знаю, с чем это связано, но после того, как я сделал эти 2 фото, я снова убрал USB-тестер из цепи и ток заряда восстановился до 1А.

Так что данной характеристике плата полностью соответствует.

Тест 3. Нагрев.

Ну тут все просто - подождал 10 минут, а потом «снял» температуру с помощью пирометра.

Я не буду разбираться нормально это или нет. Я просто добавлю к ней алюминиевый радиатор охлаждения.

Тест 4. Поведение при работе с избыточно заряженными аккумуляторами.

Друзья, параллельно с обзором на эту зарядную плату, я отщелкиваю еще и обзор на панасоники. Поэтому в этих двух обзорах несколько фотографий будет одинаковыми. Так вот. Ради теста я разрядил один из Панасоников до недопустимо низкого напряжения.

И вот сейчас у любителей данных Панасоников сердце облилось кровь. Ведь они ожидали увидеть разряд до 2,4В, может даже 2,2В, но никак не 1,77В.

Я обнулил счетчик тестера и поставил заряжаться. И вот тут я был приятно удивлен. Я ожидал, что из-за малого сопротивления аккумулятора ток будет запредельно высоким, что даже с USB-тестером ток будет ближе к 2А, что зарядная плата будет работать в бешеных перегрузках, почти на коротком замыкании, и прочую драму, которая заставляет радиолюбителей сидеть и трястись от мыслей вроде «да что ж ты делаешь, ублюдок!» Ничего подобного.

Всего 80mA (ОК, округлим до 100) - так называемый «восстановительный» ток. Фантастика! Т.е. эта плата умеет работать еще и с избыточно разряженными аккумуляторами!

А может она просто глючит? Не думаю. Спустя некоторое время, когда аккумулятор принял в себя примерно 35mAh, ток зашкалил за 1А.

Пока включил цифровик, пока настроил, пока туда-сюда, аккумулятор принял в себя 50mAh. Именно их мы и вычтем из итоговой емкости, которую нам покажет USB-тестер. Но это уже совсем другая история.

Друзья, учитывая цену в 50р - данная микросхема достойна аплодисментов.

Мудрость: чем сильнее бабушка любит внука - тем круче этот внук отыгрывается на своих родителях.

Кинокомпания «Разоблачение» представляет… Триллер «Кабелерез». В главных ролях: