Линейные и нелинейные элементы электрической цепи. Основные свойства, характеристики и параметры нелинейных элементов (Н.Э.) Параметры нелинейных элементов

Свойства нелинейных двухполюсников обычно описывают их статическими характеристиками . Общепринятой характеристикой нелинейного резистивного двухполюсника является его вольт-амперная характеристика (ВАХ).

Статическая ВАХ это зависимость тока, протекающего через нелинейный резистивный элемент, от приложенного к нему напряжения в установившемся режиме (или наоборот – зависимость падения напряжения на элементе от протекающего через него тока).

Статическая ВАХ определяет свойства элемента при переменном напряжении (токе) низкой частоты, значение которой не превышает предельно допустимого значения.

В зависимости от числа внешних выводов различают нелинейные двухполюсные элементы (резисторы с нелинейным сопротивлением, электровакуумные и полупроводниковые диоды) и нелинейные многополюсные элементы (транзисторы и тиристоры различных типов, электровакуумные триоды и пентоды).

ВАХ нелинейного двухполюсного элемента может быть симметричной (рис.15.2,а) или несимметричной (рис.15.2,б,в) относительно начала координат.

Рис.15.2 – Статические вольт-амперные характеристики различных

резистивных элеметов

Для симметричной ВАХ справедливо условие I (U ) = -I (-U ), а для несимметричной I (U )  -I (-U ).

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного резистивного элемента с симметричной характеристикой поменять местами.

Различают нелинейные резистивные элементы с монотонной (рис.15.2,а) и немонотонной (рис.15.2,б,в) ВАХ.

У элементов с монотонной ВАХ увеличение приложенного к элементу напряжения приводит к росту (или хотя бы не уменьшению) тока и, наоборот, увеличение тока приводит к возрастанию напряжения на элементе.

Напряжение и ток на зажимах такого элемента связаны между собой однозначной зависимостью , причем производные ВАХ во всех ее токах принимают только неотрицательные значения , т.е.

,
.

ВАХ нелинейного элемента является немонотонной , если хотя бы в ограниченном диапазоне изменения токов и напряжений рост напряжения на зажимах элемента приводит к уменьшению тока или, наоборот, увеличение тока приводит к снижению напряжения.

Ток и напряжение нелинейного резистивного элемента с немонотонной ВАХ не связаны между собой взаимно однозначной зависимостью (рис.15.2,б,в).

Многообразие всех ВАХ нелинейных двухполюсников можно свести к шести основным типам (рис.15.3,а-е).

ВАХ могут иметь зон нечувствительности, т.е. «ступеньку» по напряжению или по току (рис.15.4,а,б)

Вид ВАХ нелинейного резистивного двухполюсника может зависеть от некоторой величины, не связанной непосредственно с токами или напряжениями цепи, в которую включен данный элемент, в частности от температуры, освещенности, давления и др. Такие элементы относятся к неэлектрически управляемым двухполюсникам.

Так как каждому значению управляющей величины соответствует своя кривая, характеризующая зависимость между током и напряжением на зажимах неэлектрически управляемого резистивного двухполюсника, также двухполюсники характеризуются не одной ВАХ, а семейством ВАХ (рис.15.5).

Рис.15.5 – Семейство ВАХ термистора.

Важнейший класс нелинейных резистивных элементов составляют электрически управлямые элементы (транзисторы различных типов, вакуумные и газоразрядные трехэлектродные и многоэлектродные приборы. Элементы этого типа содержат два основных электрода:

Катод и анод у электронных ламп;

Эмиттер и коллектор у биполярных транзисторов;

Сток и исток у полевых транзисторов.

Сопротивление между основными электродами изменяется под действием тока или напряжения одного или нескольких управляющих электродов:

Сетки у электронных ламп;

Базы у биполярных транзисторов;

Затвора или подложки у полевых транзисторов.

В частности, ток i нелинейного резистивного трехполюсника (рис.15.6), имеющего два основных и один управляющий электрод, является функцией напряжения между основными электродами u и тока управления i упр или напряжения u упр управляющего электрода:

i = i (u , i упр)

i = i (u , u упр).

Рис.15.5 – Электрически управляемый нелинейный трехполюсник

Как видно из рис.15.5, электрически управляемый нелинейный резистивный трехполюсник имеет две стороны: входную (управляющую) и выходную (управляемую), причем один из выводов трехполюсника является общим для обеих сторон.

Электрически управляемые нелинейные резистивные элементы могут быть охарактеризованы различными семействами ВАХ.

Выходные ВАХ отображают зависимость между выходным током i и выходным напряжением u при различных значениях входного тока i упр или напряжения u упр .

Типовые выходные ВАХЪ биполярного транзистора в схеме с общим эмиттером (рис.15.6,а) представлены на рис.15.6,б.

Полная классификация нелинейных элементов представлена в таблице 15.1, а примеры нелинейных резистивных элементов с их условными графическими обозначениями и вольт-амперными характеристиками приведены в таблице 15.2.

Резистивные

1. По виду параметра

Признаки классификации

Табл.29.1 – Классификация нелинейных элементов

Индуктивные

Емкостные

Двухполюсные

2. По количес-тву внешних выводов

Многополюсные

Симметричные

3. По наличию симмет-рии ВАХ

Несимметричные

Монотонные

4. По наличию монотон-ности ВАХ

Немонотонные

С насыщением по току

5. По типу ВАХ

С насыщением по напряжению

S-типа (неоднозначность по току)

N-типа (неоднозначность по

напряжению)

С зоной нечувствительности по току

6. По наличию зоны нечувствитель-ности

С зоной нечувствительности по напряжению

Без зоны нечувствительности

Неэлектрически управляемые

7. По способу управления

Электрически управляемые

Таблица 15.1 – Резистивные НЭ

Элемент, графическое обозначение

Характеристика

Двухполюсные резистивные элементы

Варистор

Симметричная

I (U ) = -I (-U ),

монотонная

Электровакуумный диод

Несимметричная, монотонная ВАХ

(dI /dU ) > 0

Неоновая лампа

ВАХ с падающим участком (dI /dU ) < 0,

несимметричная, немонотонная,

Полупровод-никовый диод

Стабилитрон

ВАХ несимметричная, монотонная

Тоннельный диод

ВАХ с падающим участком, несимметричная, немонотонная, N-типа

Неэлектрически управляемые двухполюсные резистивные элементы

Терморезистор

ВАХ с падающим участком, сопротивление зависит от температуры

Фотодиод

Сопротивление зависит от светового потока

Электрически управляемые трехполюсные резистивные элементы

Биполярный

транзистор

типа n - p - n

Выходные ВАХ

ВАХ несимметрична, монотонна, с насыщением по току.

Выходной ток зависит от напряжения и от входного тока:

I к = I (I Б, U кэ)

Тиристор

ВАХ несимметрична, немонотонна, S-типа, зависит от напряжения на управляющем электроде

2.2. СТАТИЧЕСКИЕ И ДИФФЕРЕНЦИАЛЬНЫЕ ПАРАМЕТРЫ

Для резистивных нелинейных элементов важным параметром является их сопротивление, которое в отличие от линейных резисторов не является постоянным, а зависит от того, в какой точке ВАХ оно определяется. Различают два вида сопротивлений: статическое и дифференциальное (динамическое ).

Статическое сопротивление характеризует рабочую точку нелинейного элемента по постоянному току, а дифференциальное – работу нелинейного элемента в окрестности этой рабочей точки.

Пусть резистивный нелинейный элемент имеет вольт-амперную характеристику, указанную на рисунке 15.8.

Статическое сопротивление – это соотношение напряжения к току в данной точке ВАХ.

(15.1)

где
- масштабный коэффициент;

m u , m i – масштабы по напряжению и току;

 - угол наклона секущей, проведенной через начало координат и рабочую точку, к оси токов.

Статическое сопротивление – это сопротивление нелинейного элемента постоянному току.

Очевидно статическая проводимость есть величина, обратная статическому сопротивлению

(15.2)

– это предел отношения приращения напряжения к соответствующему приращению тока при небольшом смещении рабочей точки на ВАХ под воздействием переменного напряжения малой амплитуды:


Дифференциальное сопротивление это сопротивление нелинейного элемента переменному току малой амплитуды.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ им. Г.И. НОСОВА»

КАФЕДРА ЭЛЕКТРОТЕХНИКИ И ЭЛЕКТРОТЕХНИЧЕСКИХ СИСТЕМ

О.И. Петухова, Л.В. Яббарова, Ю.И. Мамлеева

МЕТОДЫ АНАЛИЗА НЕЛИНЕЙНЫХ ЦЕПЕЙ

1.1. Нелинейные элементы и их характеристики 3

1.2.3. Расчет цепей при смешанном соединении элементов 7

1.2.4. Преобразование активных нелинейных двухполюсников 8

1.2.5. Анализ разветвленных цепей 10

1.3. Аппроксимация характеристик нелинейных элементов 12

1.3.1. Выбор аппроксимирующей функции 12

1.3.3. Аппроксимация ВАХ в окрестностях рабочей точки 18

2. МАГНИТНЫЕ ЦЕПИ 19

2.1. Основные понятия 19

2.2. Законы Ома и Кирхгофа для магнитных цепей 21

2.3. Расчет магнитных цепей постоянного тока 23

3.1. Особенности периодических процессов в электрических цепях с инерционными нелинейными элементами 27

3.2. Особенности периодических процессов в цепях с безинерционными нелинейными сопротивлениями 30

3.3. Электромагнитные процессы в катушке с ферромагнитным сердечником 31

1. НЕЛИНЕЙНЫЕ ЦЕПИ

1.1. Нелинейные элементы и их характеристики

Характеристики большинства реальных элементов в той или иной степени нелинейны. В одних случаях нелинейность элементов невелика и при построении упрощенной модели ею можно пренебречь, в других – нелинейностью пренебречь нельзя. Более того, функционирование большинства радиоэлектронных устройств, невозможно без нелинейных элементов (выпрямление, умножение, ограничение, генерирование и т.д.).

Реальные нелинейные элементы подразделяются на безинерционныеи инерционные. Если зависимость между мгновенными значениями тока и напряжения элементов при периодическом воздействии определяется статической вольт - амперной характеристикой (ВАХ), то элемент относится к безинерционнымнелинейным элементам. Если статическая ВАХ и динамическая, снятая при частоте, равной или меньшей рабочей, не совпадают, то такой элемент следует рассматривать какинерционный.

Таким образом, инерционный нелинейный элемент является линейным относительно мгновенных значений тока и напряжения, а ВАХ, связывающая действующие значения оказывается нелинейной. Безинерционные элементы являются нелинейными как в отношении мгновенных значений
,
, так и в отношении действующихи.

В зависимости от числа внешних выводов различают нелинейные элементы двухполюсные (диоды, термисторы) имногополюсные (транзисторы, триоды, пентоды). Вольт - амперная характеристика нелинейного двухполюсного элемента может быть симметричной или несимметричной. ВАХ двухполюсника с симметричной характеристикой представлена на рис.1. Для нее выполняется условие:

,
. (1)

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного элемента с симметричной характеристикой поменять местами. Если условие (1) не выполняется, ВАХ – несимметрична.

Отношение напряжения, измеряемого отрезком АВ к току, измеряемому отрезком ОВ (см.рис.1.), определяет в некотором масштабе
статическое сопротивлениеR в точке А.

(2)

Предел отношения приращения напряжения на участке цепи к приращению тока в нем или производная от напряжения по току в том же масштабе
, определяет дифференциальное сопротивление:

. (3)

Различают нелинейные элементы с монотоннойи немонотоннойВАХ. Для монотонныхВАХ иливсегда больше нуля.

Немонотонные характеристики разделяются на N-и S-типы. У элементов с N-образной характеристикой (рис. 2.а) одному и тому же значению тока может соответствовать несколько различных напряжений. У S-образнойВАХ одному значению напряжения может соответствовать несколько токов (рис. 2.б).

Рис.2. ВАХ различных нелинейных элементов

а) немонотонная N -типа; б) немонотонная S – типа;

в) ВАХ неэлектрически управляемого двухполюсника - термистора.

Вид ВАХ нелинейного элемента может зависеть от некоторой величины, не связанной с токами и напряжениями цепи, в которую включен элемент, в частности от температуры (рис. 2.в), освещенности, давления и т.д. Такие элементы относятся кнеэлектрически управляемым двухполюсникам.

Рис.3. Электрически управляемый элемент

а) транзистор; б) семейство входных ВАХ;

в) семейство выходных ВАХ.

Важнейший класс нелинейных элементов составляют электрическиуправляемые элементы(транзисторы, тиристоры, и т.д.). Они имеют два основных электрода и один управляющий (рис.3.а). Ток элемента определяется уравнениями:

или
. (4)

Выводы нелинейного управляемого трёхполюсника образуют с остальной частью цепи два контура – основной (выходной) и управляющий (входной).

Управляемые элементы характеризуются семействами ВАХ: выходными и входными. (рис.3.б,с)

Вид ВАХ нелинейного управляемого элемента существенно зависит от схемы включения элемента, т.е. от того какой из электродов является общим для основного и управляющего контуров. На принципиальных электрических схемах реальные нелинейные элементы изображаются с помощью установленных ЕСКД условных графических обозначений (рис.4).

Рис.4 Обозначения нелинейных элементов

1. Основные положения

R a =

R abR ca

R b =

R bcR ab

R bc + R ca

R c =

R ab + R bc + R ca.

Путём взаимных подстановок в полученных выражениях мы можем получить выражения для R ab , R bc и R ca (т. е. выражения для преобразования звезды в треугольник):

R ab = R a + R b + R a R b ;

R bc = R b + R c + R b R c ;

R ca = R c + R a + R c R a .

1.5.1. Общие сведения

Нелинейная электрическая цепь это электрическая цепь, содержащая один или несколько нелинейных элементов [ 1 ] .

Нелинейный элемент это элемент электрической цепи, параметры которого зависят от определяющих их величин (сопротивление резистивного элемента от тока и напряжения, ёмкость емкостного элемента от заряда и напряжения, индуктивность индуктивного элемента от магнитного потока и электрического тока).

Таким образом, вольт–амперная u (i ) характеристика резистивного элемента, вебер–амперная ψ(i ) характеристика индуктивного элемента и кулон–вольтная q (u ) характеристика емкостного элемента имеют вид не прямой линии (как в случае линейного элемента), а некой кривой, обычно определяемой экспериментально и не имеющей точного аналитического представления.

Нелинейная электрическая цепь обладает рядом существенных отличий от линейной и в ней могут возникать специфические явления

1.5. Нелинейные электрические цепи

Рис. 1.28. УГО нелинейных резистивного, индуктивного и емкостного элементов

(например гистерезис), поэтому этого методы расчёта линейных цепей к нелинейным цепям неприменимы. Особо следует отметить неприменимость к нелинейным цепям метода наложения (суперпозиции).

Важно понимать, что характеристики реальных элементов никогда не бывают линейными, однако в большинстве инженерных расчётов они, с допустимой точностью, могут считаться линейными.

Все полупроводниковые элементы (диоды, транзисторы, тиристоры и т. д.) являются нелинейными элементами.

Условные графические обозначения нелинейных резистивного, индуктивного и емкостного элементов приведены на рис. 1.28 . На выносной площадке мажет указываться параметр, вызывающий нелинейность (например температура для терморезистора)

1.5.2. Параметры нелинейных элементов

Нелинейные элементы характеризуются статическими (R ст , L ст , и C ст ) и дифференциальными (R д , L д , и C д ) параметрами.

Статические параметры нелинейного элемента определяются как отношение ординаты выбранной точки характеристики к её абсциссе (рис. 1.29 ).

Статические параметры пропорциональны тангенсу угла наклона прямой, проведённой через начало координат и точку, для которой производится расчёт. Для примера на рис. 1.29 получим:

F ст = y A = m y tg α, x A m x

где α–– угол наклона прямой, проведённой через начало координат и рабочую точку A ;

m y и m x –– масштабы по осям ординат и абсцисс соответственно.

Рис. 1.29. К определению статических и дифференциальных параметров

нелинейных элементов

F ст = y A , F диф = dy x A dx

Отсюда статические параметры резистивного, индуктивного и емкостного элементов будут иметь следующий вид:

R ст =

L ст =

C ст =

Дифференциальные параметры нелинейного элемента определяются как отношение малого приращения ординаты выбранной точки характеристики к малому приращению её абсциссы (рис. 1.29 ).

Дифференциальные параметры пропорциональны тангенсу угла наклона касательной в рабочей точке характеристики и осью абсцисс. Для примера на рис. 1.29 получим:

F диф = dy = m y tg β, dx m x

где β –– угол наклона касательной в рабочей точке B характеристики и осью абсцисс;

m y и m x –– масштабы по осям ординат и абсцисс соответственно. Отсюда дифференциальные параметры резистивного, индуктив-

ного и емкостного элементов будут иметь следующий вид:

R диф =

L диф =

C диф =

1.5.3. Методы расчёта нелинейных цепей

Нелинейность параметров элементов усложняет расчёт цепи, поэтому в качестве рабочего участка стараются выбрать либо линейный, либо близкий к нему участок характеристики и рассматривают, с допустимой точностью, элемент как линейный. Если же это невозможно или нелинейность характеристики является причиной выбора элемента (особенно это характерно для полупроводниковых элементов), то применяют специальные методы расчёта –– графический , аппроксимации

(аналитической и кусочно–линейной) и ряд других. Рассмотрим эти методы более подробно.

Графический метод

Идея метода состоит в построении характеристик элементов цепи (вольт–амперной u (i ), вебер–амперной ψ(i ) или кулон–вольтной q (u )), а затем, путём их графических преобразований (напр. сложения), получения соответствующей характеристики для всей цепи или её участка.

Графический метод расчёта является наиболее простым и наглядным в применении, обеспечивая в основной массе расчётов необходимую точность, однако он применим для небольшого количества нелинейных элементов в цепи и требует аккуратности при проведении графических построений.

Пример расчёта нелинейной цепи графическим методом для последовательного соединения линейного и нелинейного резистивных элементов приведён на рис. 1.30 , а , для параллельного –– на рис. 1.30 , б .

При расчёте последовательной цепи в одних осях строятся характеристики всех рассчитываемых элементов (для рассматриваемого примера это u нэ (i ) для нелинейного резистора R нэ и u лэ (i ) для линейного R лэ ). Характер изменения общего напряжения в цепи u (i ) определяется путём сложения характеристик нелинейного u нэ (i ) и линейного u лэ (i ) элементов u (i ) = u нэ (i ) + u лэ (i ). Сложение производится при одинаковых значении тока (для i = i 0 : u 0 = u нэ 0 + u лэ 0 , см. рис. 1.30 , а .).

Расчёт параллельной цепи производится аналогично, только характеристика всей цепи строится путём сложения токов, при постоянном напряжении (для u = u 0 : i 0 = i нэ 0 + i лэ 0 , см. рис. 1.30 , б .).

Рис. 1.31. Активный линейный двухполюстник в качестве схемы замещения нелинейного элемента

Метод аппроксимации

Идея метода состоит в замене экспериментально полученной характеристики нелинейного элемента аналитическим выражением.

Различают аналитическую аппроксимацию, при которой характеристика элемента заменяется аналитической функцией (например линейной y = ax + b , сте-

сом y = a th βx и другими) и кусочно–ли-

нейную , при которой характеристика элемента заменяется совокупностью прямоли-

нейных отрезков. Точность аналитической аппрокси-

мации определяется правильностью выбора аппроксимирующей функции и точностью подбора коэффициентов. Преимуществом кусочно–линейной аппроксимации является простота применения и возможность рассмотрения элемента как линейного.

Кроме того, в ограниченном диапазоне изменений сигнала, в котором его изменения можно считать линейным (т. е. в режиме малого сигнала ), нелинейный элемент, с допустимой точностью, может быть заменён эквивалентным линейным активным двухполюстником (рис. 1.31 , более подробно двухполюстник будет рассмотрен в § 2.3.4 ), где ток и напряжение связаны выражением:

U = E + Rдиф I ,

где R диф –– дифференциальное сопротивление нелинейного элемента на линеаризуемом участке.

Пример аналитической аппроксимации характеристики полупроводникового диода с помощью функции вида i = a (e bu − 1) приведён на рис. 1.32 , б , кусочно–линейной аппроксимации –– на рис. 1.32 , в , исходная характеристика диода приведена на рис. 1.32 , а .

Рис. 1.32. Аппроксимации характеристики полупроводникового диода.

а –– исходная характеристика диода;

б –– аналитическая аппроксимация с помощью функции вида i = a (e bu − 1);

в –– кусочно–линейная аппроксимация.

Характеристики большинства реальных элементов в той или иной степени нелинейны. В одних случаях нелинейность элементов невелика и при построении упрощенной модели ею можно пренебречь, в других – нелинейностью пренебречь нельзя. Более того, функционирование большинства радиоэлектронных устройств, невозможно без нелинейных элементов (выпрямление, умножение, ограничение, генерирование и т.д.).

Реальные нелинейные элементы подразделяются на безинерционныеи инерционные. Если зависимость между мгновенными значениями тока и напряжения элементов при периодическом воздействии определяется статической вольт - амперной характеристикой (ВАХ), то элемент относится к безинерционнымнелинейным элементам. Если статическая ВАХ и динамическая, снятая при частоте, равной или меньшей рабочей, не совпадают, то такой элемент следует рассматривать какинерционный.

Таким образом, инерционный нелинейный элемент является линейным относительно мгновенных значений тока и напряжения, а ВАХ, связывающая действующие значения оказывается нелинейной. Безинерционные элементы являются нелинейными как в отношении мгновенных значений , , так и в отношении действующих и .

В зависимости от числа внешних выводов различают нелинейные элементы двухполюсные (диоды, термисторы) имногополюсные (транзисторы, триоды, пентоды). Вольт - амперная характеристика нелинейного двухполюсного элемента может быть симметричной или несимметричной. ВАХ двухполюсника с симметричной характеристикой представлена на рис.1. Для нее выполняется условие:

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного элемента с симметричной характеристикой поменять местами. Если условие (1) не выполняется, ВАХ – несимметрична.

Отношение напряжения, измеряемого отрезком АВ к току, измеряемому отрезком ОВ (см.рис.1.), определяет в некотором масштабе статическое сопротивление R в точке А.

(2)

Предел отношения приращения напряжения на участке цепи к приращению тока в нем или производная от напряжения по току в том же масштабе , определяет дифференциальное сопротивление:

Различают нелинейные элементы с монотоннойи немонотоннойВАХ. Для монотонныхВАХ или всегда больше нуля.

Немонотонные характеристики разделяются на N-и S-типы. У элементов с N-образной характеристикой (рис. 2.а) одному и тому же значению тока может соответствовать несколько различных напряжений. У S-образнойВАХ одному значению напряжения может соответствовать несколько токов (рис. 2.б).

Рис.2. ВАХ различных нелинейных элементов

а) немонотонная N-типа; б) немонотонная S – типа;

в) ВАХ неэлектрически управляемого двухполюсника - термистора.

Вид ВАХ нелинейного элемента может зависеть от некоторой величины, не связанной с токами и напряжениями цепи, в которую включен элемент, в частности от температуры (рис. 2.в), освещенности, давления и т.д. Такие элементы относятся кнеэлектрически управляемым двухполюсникам.

Рис.3. Электрически управляемый элемент