В чем состоит негативное влияние мультиколлинеарности. Понятие мультиколлинеарности

  • 4. Статистическое оценивание параметров плр по методу наименьших квадратов. Свойства мнк – оценок
  • Свойства мнк-оценок:
  • 5. Проверка качества множественной линейной регрессии: значимость параметров, доверительные интервалы, адекватность модели. Прогнозирование.
  • 6. Множественная линейная регрессия (млр). Классические предположения. Мнк-оценка параметров модели.
  • 7. Свойства мнк-оценок множественной линейной регрессии. Теорема Гаусса- Маркова.
  • 8. Проверка качества множественной линейной регрессии: значимость параметров, доверительные интервалы, адекватность модели. Прогнозирование.
  • 5. Коэф. Детерминации
  • Прогнозирование по модели множественной линейной регрессии
  • 9. Спецификация эконометрической модели: способы и диагностика отбора экзогенных переменных. Тесты Рамсея и Амемья.
  • Критерий Рамсея (Ramsey):
  • 10. Спецификация эконометрической модели: выбор формы зависимости нелинейной модели
  • Принципы спецификаций
  • 11. Проблема наличия мультиколлинеарности. Последствия наличия и диагностики мультиколлинеарности.
  • Методы диагноза мультиколлинеарности:
  • 12. Методы устранения мультиколлинеарности. Метод главных компонент. Гребневая регрессия.
  • 13. Проблемы гетероскедастичности модели. Критерии ее диагностики.
  • 1. Критерий Парка (Park).
  • 2. Критерий Голдфелда-Кандта (Goldfeld-Quandt).
  • 3. Критерий Бриша-Пагана (Breusch-Pagan).
  • 4. Критерий Вайта (White).
  • 14. Обобщенный мнк (омнк). Свойства оценок млр по омнк. Взвешенный мнк в задаче оценивания параметров модели. Свойства оценок по взвешенному мнк.
  • Вопрос 15. Проблема автокорреляции остатков модели. Последствия автокорреляции при использовании модели.
  • Причины автокорреляции остатков
  • Последствия автокорреляции:
  • 16. Критерий диагностики автокорреляции Дарбина-Уотсона
  • 17.Методы устранения автокорреляции. Процедуры оценивания Кохрейна-Оркатта и Хильдрета-Лу
  • 18. Модели с распределенными лагами: структура лагов по Койку: Частные случаи (модель с неполной корректировкой и адаптивных ожиданий)
  • 19 Модели с распределенными лагами: линейно-арифметическая структура лагов и полиномиальная структура лагов по Алмон
  • 20. Тест h-Дарбина и множественный тест Лагранжа проверки автокорреляции в лаговых моделях
  • 21. Понятие временного ряда (вр). Модель вр, основные задачи анализа вр. Методы сглаживания вр (скользящего среднего, экспоненциального сглаживания, последовательных разностей)
  • 22 Стационарность временного ряда (вр). Характеристики корреляции уровней вр.
  • 23 Стационарные модели временных рядов: авторегрессии, скользящего среднего, арсс
  • 24. Нестационарная модель арисс. Оценка параметров модели.
  • 28. Прогнозирование временных рядов. Показатели точности прогнозов.
  • 30. Тест Чоу диагностики включения фиктивных переменных в эконометрическую модель.
  • 32. Системы одновременных эконометрических уравнений (соу). Структурная и приведенная форма соу (графическое и матричное представление).
  • 33. Проблемы идентификации систем одновременных уравнений (соу). Идентифицируемость уравнений соу (порядковый и ранговый критерии)
  • 34. Методы оценивания систем одновременных уравнений: косвенный мнк, двухшаговый мнк. Применимость и свойства оценок
  • 35. Современное состояние эконометрики. Примеры больших эконометрических моделей
  • 11. Проблема наличия мультиколлинеарности. Последствия наличия и диагностики мультиколлинеарности.

    Если имеется линейная связь экзогенных переменных , например , то МНК-оценки не будут существовать, т.к. не существует обратная к матрице, которая будет вырожденной. Такая ситуация в эконометрике носит название проблемымультиколлинеарности.

    Причины мультиколлинеарности:

    неправильная спецификация модели

    небрежное проведение сбора статданных (использование повторных наблюдений).

    Различают явную и неявную мультиколлинеарность.

    Явная – известна точная линейная зависимость между переменными модели.

    Например, если в модель инвестиционного процесса включить номинальную и реальную процентные ставки, т.е.

    где известна зависимость реальной и номинальной ставок и темпа инфляции

    то имеет место явная мультиколлинеарность.

    Неявная возникает, когда существует стохастическая (неопределенная, случайная) линейная зависимость между экзогенными переменными.

    преобладает неявная, ее наличие характеризуют 6 признаков :

    1. МНК-оценки параметров модели теряют свойства несмещенности .

    2. Дисперсия МНК-оценок возрастает:

    Вследствие того, что, коэффициент корреляции, тогда, что влечет

    3. Происходит уменьшение t -статистик, являющихся индикаторами значимости параметров:

    4. Коэффициент детерминации уже не является мерой адекватности модели, так как низкие значения t -статистик влекут недоверие к подобранной модели зависимости.

    5. Оценки параметров при неколлинеарных экзогенных переменных становятся очень чувствительными к изменению данных.

    6. Оценки параметров при неколлинеарных экзогенных переменных становятся незначимыми.

    Методы диагноза мультиколлинеарности:

    Шаг 1. В модели (исходной) множественной линейной регрессии переберем все подмодели, в которых какая-либо экзогенная переменная становится эндогенной, т.е.

    Шаг 2. Вычисляем коэффициенты детерминации всех полученных моделей , на основе которых рассчитаем так называемые инфляционные факторы:

    Если , то делают вывод о существовании мультиколлинеарности.

    а) в модели не изменяют никакую структуру, а, применяя компьютерный МНК, анализируют наличие проблемы мультиколлинеарности по визуальным методам.

    б) улучшают спецификацию модели, устраняя из исходной модели коллинеарные экзогенные переменные.

    в) увеличивают объем статистических данных.

    г) объединяют коллинеарные переменные и включают в модель общую экзогенную переменную.

    12. Методы устранения мультиколлинеарности. Метод главных компонент. Гребневая регрессия.

    Если основная задача модели − прогноз будущих значений зависимой переменной, то при достаточно большом коэффициенте детерминации R 2 (≥ 0.9) наличие мультиколлинеарности зачастую не сказывается на прогнозных качествах модели.

    Если целью исследования является определение степени влияния каждой из объясняющих переменных на зависимую переменную, то наличие мультиколлинеарности исказит истинные зависимости между переменными. В этой ситуации мультиколлинеарность представляется серьезной проблемой.

    Отметим, что единого метода устранения мультиколлинеарности, годного в любом случае, не существует. Это связано с тем, что причины и последствия мультиколлинеарности неоднозначны и во многом зависят от результатов выборки.

    МЕТОДЫ:

    Исключение переменной(ых) из модели

    Например, при исследовании спроса на некоторое благо в качестве объясняющих переменных можно использовать цену данного блага и цены заменителей данного блага, которые зачастую коррелируют друг с другом. Исключив из модели цены заменителей, мы, скорее всего, допустим ошибку спецификации. Вследствие этого возможно получение смещенных оценок и осуществление необоснованных выводов. в прикладных эконометрических моделях желательно не исключать объясняющие переменные до тех пор, пока коллинеарность не станет серьезной проблемой.

    Получение дополнительных данных или новой выборки

    Иногда достаточно увеличить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных сокращает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серьезными издержками. Кроме того, данный подход может усилить автокорреляцию. Эти проблемы ограничивают возможность использования данного метода.

    Изменение спецификации модели

    В ряде случаев проблема мультиколлинеарности может быть решена изменением спецификации модели: либо изменением формы модели, либо добавлением объясняющих переменных, которые не учтены в первоначальной модели, но существенно влияющие на зависимую переменную.

    Использование предварительной информации о некоторых параметрах

    Иногда при построении модели множественной регрессии можно воспользоваться некоторой предварительной информацией, в частности, известными значениями некоторых коэффициентов регрессии. Вполне вероятно, что значения коэффициентов, полученные для каких-либо предварительных (обычно более простых) моделей, либо для аналогичной модели по ранее полученной выборке, могут быть использованы для разрабатываемой в данный момент модели.

    Для иллюстрации приведем следующий пример. Строится регрессия. Предположим, что переменные X1 и X2 коррелированы. Для ранее построенной модели парной регрессии Y = γ0 + γ1X1+υ был определен статистически значимый коэффициент γ1 (для определенности пусть γ1 = 0.8), связывающий Y с X1. Если есть основания думать, что связь между Y и X1 останется неизменной, то можно положить γ1 = β1 = 0.8. Тогда:

    Y = β0 + 0.8X1 + β2X2 + ε. ⇒ Y – 0.8X1 = β0 + β2X2 + ε.

    Уравнение фактически является уравнением парной регрессии, для которого проблема мультиколлинеарности не существует.

    Ограниченность использования данного метода обусловлена:

      получение предварительной информации зачастую затруднительно,

      вероятность того, что выделенный коэффициент регрессии будет одним и тем же для различных моделей, не высока.

    Преобразование переменных

    В ряде случаев минимизировать либо вообще устранить проблему мультиколлинеарности можно с помощью преобразования переменных.

    Например, пусть эмпирическое уравнение регрессии имеет вид Y = b0 + b1X1 + b2X2

    причем X1 и X2 − коррелированные переменные. В этой ситуации можно попытаться определять регрессионные зависимости относительных величин. Вполне вероятно, что в аналогичных моделях, проблема мультиколлинеарности будет отсутствовать.

    Метод главных компонент является одним из основных методов исключения переменных из модели множественной регрессии.

    Данный метод используется для исключения или уменьшения мультиколлинеарности факторных переменных модели регрессии. Суть метода : сокращение числа факторных переменных до наиболее существенно влияющих факторов . Это достигается с помощью линейного преобразования всех факторных переменных xi (i=0,…,n) в новые переменные, называемые главными компонентами, т. е. осуществляется переход от матрицы факторных переменных Х к матрице главных компонент F. При этом выдвигается требование, чтобы выделению первой главной компоненты соответствовал максимум общей дисперсии всех факторных переменных xi (i=0,…,n), второй компоненте – максимум оставшейся дисперсии, после того как влияние первой главной компоненты исключается и т. д.

    Если ни одну из факторных переменных, включённых в модель множественной регрессии, исключить нельзя, то применяют один из основных смещённых методов оценки коэффициентов модели регрессии – гребневую регрессию или ридж (ridge). При использовании метода гребневой регрессии ко всем диагональным элементам матрицы (ХТХ) добавляется небольшое число τ: 10-6 ‹ τ ‹ 0.1. Оценивание неизвестных параметров модели множественной регрессии осуществляется по формуле:

    где ln – единичная матрица.

    Мультиколлинеарность означает, что в множественной регрессионной модели две или большее число независимых переменных (факторов) связаны между собой тесной линейной зависимостью или, другими словами, имеют высокую степень корреляции ().

    Последствия мультиколлинеарности:

    1. Первым практическим последствием мультиколлинеарности является большая дисперсия и ковариация оценок параметров, вычисленных методом наименьших квадратов.

    2. Вторым практическим последствием мультиколлинеарности является увеличение доверительных интервалов теоретических коэффициентов уравнения линейной регрессии.

    3. Уменьшается статистика коэффициентов, поэтому возможен вывод о статистической незначимости коэффициента.

    4. Коэффициенты уравнения регрессии становятся очень чувствительными к малейшим изменениям данных.

    5. Затрудняется определение вклада каждой из переменных в объясняемую уравнением дисперсию признака.

    К сожалению, нет единого подхода для определения мультиколлинеарности. Приведем несколько методов тестирования наличия мультиколлинеарности.

    1) Высокое значение коэффициента детерминации и низкие статистики некоторых переменных.

    2) Высокие значения частных коэффициентов корреляции. Однако это условие является достаточным, но не является необходимым условием наличия мультиколлинеарности. Она может иметь место даже при относительно небольших значениях коэффициентов корреляции, когда число факторов больше двух.

    3) тест Фаррара–Глобера.

    Этот тест имеет и другое название: построение вспомогательной регрессии.

    Коэффициент детерминации является коэффициентом детерминации в уравнении регрессии, которое связывает фактор с остальными факторами Например, .является коэффициентом детерминации такой регрессии:

    Для каждого коэффициента детерминации рассчитываем отношение:

    Тест проверяет гипотезу

    при конкурирующей гипотезе

    Вычисленное значение сравниваем с критическим значением , найденным по таблицам распределения Фишера с и степеням свободы и заданным уровнем значимости. Если то отвергаем нулевую гипотезу и считаем, что фактор является мультиколлинеарным; если то нулевую гипотезу принимаем и убеждаемся, что фактор не является мультиколлинеарным.

    Для устранения мультиколлинеарности существует несколько способов.

    Первый способ. Если между двумя факторами и существует мультиколлинеарность, то один из факторов исключается из рассмотрения.

    ВОПРОСЫ НА ЭКЗАМЕН ПО КУРСУ

    «ЭКОНОМЕТРИКА (продвинутый уровень)»

    1. Модель множественной регрессии. Виды моделей множественной регрессии.

    2. Матричная форма записи и матричная формула оценки параметров множественной регрессии.

    3. Оценка качества уравнения регрессии. Объясненная и необъясненная составляющие уравнения регрессии.

    4. Коэффициент детерминации и коэффициент корреляции, их расчет в модели парной регрессии.

    5. Выборочный множественный коэффициент детерминации и проверка его значимости по -критерию Фишера.

    6. Проверка значимости множественного уравнения регрессии с помощью -критерия Фишера.

    Значимость уравнения регрессии, т.е. соответствие эконометрической модели Y = a ˆ0 + a ˆ 1X + e фактическим (эмпирическим) данным, позволяет ус-

    тановить, пригодно ли уравнение регрессии для практического использования (для анализа и прогноза), или нет.

    Для проверки значимости уравнения используется F - критерий Фишера. Он вычисляется по фактическим данным как отношение несмещенной

    дисперсии остаточной компоненты к дисперсии исходного ряда. Проверка значимости коэффициента детерминации осуществляется с помощью -критерия Фишера, расчетное значение которого находится по формуле:

    ,

    где коэффициент множественной корреляции, – количество наблюдений, - количество переменных, – диагональный элемент матрицы .

    Для проверки гипотезы по таблице определяют табличное значение

    критерия Фишера F .

    F(α ν1 ν2) – это максимально возможное значение критерия в зависимости от влияния случайных факторов при данных степенях свободы

    ν = m1 , ν2 = n m −1, и уровне значимости α . Здесь m – количество аргументов в модели.

    Уровень значимости α – вероятность отвергнуть правильную гипотезу, но при условии, что она верна (ошибка первого рода). Обычно α принимается равной 0,05 или 0,01.

    Если F ф> F табл, то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если наоборт, то гипотеза H0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

    7. Оценка значимости линейных коэффициентов корреляции. -критерий Стьюдента.

    Для оценки статистической значимости коэффициентов регрессии и коэффициента корреляции рассчитывается t-критерий Стьюдента. Выдвигается гипотеза H 0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Наблюдаемые значения t-критерия рассчитываются по формулам:

    , , ,

    где – случайные ошибки параметров линейной регрессии и коэффициента корреляции.


    Для линейной парной регрессии выполняется равенство , поэтому проверки гипотез о значимости коэффициента регрессии при факторе и коэффициента корреляции равносильны проверке гипотезы о статистической значимости уравнения регрессии в целом.

    Вообще, случайные ошибки рассчитываются по формулам:

    , , .

    где – остаточная дисперсия на одну степень свободы:

    .

    Табличное (критическое) значение t-статистики находят по таблицам распределения t-Стьюдента при уровне значимости α = 0,05 и числе степеней свободы . Если t табл < t факт, то H 0 отклоняется, т.е. коэффициенты регрессии не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора.

    8. Анализ влияния факторов на основе многофакторных регрессионных моделей: коэффициент эластичности ; бета-коэффициент и дельта-коэффициент .

    9. Способы расчета параметров , , производственной функции Кобба-Дугласа.

    10. Регрессионные уравнения с переменной структурой. Фиктивные переменные. Виды фиктивных переменных. Преимущества использования фиктивных переменных при построении регрессионных моделей.

    11. Использование фиктивных переменных для исследования структурных изменений. Моделирование сезонности. Количество бинарных переменных при k градациях.

    Понятие мультиколлинеарности. Методы обнаружения и устранения мультиколлинеарности.

    Количественная оценка параметров уравнения регрессии предполагает выполнение условия линейной независимости между независимыми переменными. Однако на практике объясняющие переменные часто имеют высокую степень взаимосвязи между собой, что является нарушением указанного условия. Данное явление носит название мультиколлинеарности.

    Термин коллинеарность (collinear ) обозначает линейную корреляцию между двумя независимыми переменными, а Мультиколлинеарность (multi-collinear ) – между более чем двумя независимыми переменными. Обыкновенно под мультиколлинеарностью понимают оба случая.

    Таким образом, мультиколлинеарность означает наличие тесной линейной зависимости или сильной корреляции между двумя или более объясняющими (независимыми) переменными. Одной из задач эконометрии является выявление мультиколлинеарности между независимыми переменными.

    Различают совершенную и несовершенную мультиколлинеарность. Совершенная мультиколлинеарность означает, что вариация одной из независимых переменных может быть полностью объяснена изменением другой (других) переменной.

    Иначе, взаимосвязь между ними выражается линейной функцией

    Графическая интерпретация данного случая:

    Несовершенная мультиколлинеарность может быть определена как линейная функциональная связь между двумя или более независимыми переменными, которая настолько сильна, что может существенно затронуть оценки коэффициентов при переменных в модели.

    Несовершенная мультиколлинеарность возникает тогда, когда две (или более) независимые переменные находятся между собой в линейной функциональной зависимости, описываемой уравнением

    В отличие от ранее рассмотренного уравнения, данное включает величину стохастической ошибки . Это предполагает, что несмотря на то, что взаимосвязь между и может быть весьма сильной, она не настолько сильна, чтобы полностью объяснить изменение переменной изменением , т.е. существует некоторая необъяснимая вариация.

    Графически данный случай представлен следующим образом:


    В каких же случаях может возникнуть мультиколлинеарность? Их, по крайней мере, два.

    1. Имеет место глобальная тенденция одновременного изменения экономических показателей. В качестве примера можно привести такие показатели как объем производства, доход, потребление, накопление, занятость, инвестиции и т.п., значения которых возрастают в период экономического роста и снижаются в период спада.

    Одной из причин мультиколлинеарности является наличие тренда (тенденции) в динамике экономических показателей.

    2. Использование лаговых значений переменных в экономических моделях.

    В качестве примера можно рассматривать модели, в которых используются как величины дохода текущего периода, так и затраты на потребление предыдущего.

    В целом при исследовании экономических процессов и явлений методами эконометрии очень трудно избежать зависимости между показателями.

    Последствия мультиколлинеарности сводятся к

    1. снижению точности оценивания, которая проявляется через

    a. слишком большие ошибки некоторых оценок,

    b. высокую степень корреляции между ошибками,

    c. Резкое увеличение дисперсии оценок параметров. Данное проявление мультиколлинеарности может также отразиться на получении неожиданного знака при оценках параметров;

    2. незначимости оценок параметров некоторых переменных модели благодаря, в первую очередь, наличию их взаимосвязи с другими переменными, а не из-за того, что они не влияют на зависимую переменную. То есть -статистика параметров модели не отвечает уровню значимости ( -критерий Стьюдента не выдерживает проверки на адекватность);

    3. сильному повышению чувствительности оценок параметров к размерам совокупности наблюдений. То есть увеличение числа наблюдений существенно может повлиять на величины оценок параметров модели;

    4. увеличению доверительных интервалов;

    5. повышению чувствительности оценок к изменению спецификации модели (например, к добавлению в модель или исключению из модели переменных, даже несущественно влияющих).

    Признаки мультиколлинеарности:

    1. когда среди парных коэффициентов корреляции

    между объясняющими (независимыми) переменными есть такие, уровень которых либо приближается, либо равен коэффициенту множественной корреляции.

    Если в модели более двух независимых переменных, то необходимо более детальное исследование взаимосвязей между переменными. Данная процедура может быть осуществлена с помощью алгоритма Фаррара-Глобера;

    2. когда определитель матрицы коэффициентов парной корреляции между независимыми переменными приближается к нулю:

    если , то имеет место полная мультиколлинеарность,

    если , то мультиколлинеарность отсутствует;

    3. если в модели найдено маленькое значение параметра при высоком уровне коэффициента частной детерминации и при этом -критерий существенно отличается от нуля;

    При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Мультиколлинеарностью называется линейная взаимосвязь двух или нескольких объясняющих переменных, которая может проявляться в функциональной (явной) или стохастической (скрытой) форме.
    Выявление связи между отобранными признаками и количественная оценка тесноты связи осуществляются с использованием методов корреляционного анализа. Для решения этих задач сначала оценивается , затем на ее основе определяются частные и множественные коэффициенты корреляции и детерминации, проверяется их значимость. Конечной целью корреляционного анализа является отбор факторных признаков x 1 , x 2 ,…,x m для дальнейшего построения уравнения регрессии.

    Если факторные переменные связаны строгой функциональной зависимостью, то говорят о полной мультиколлинеарности . В этом случае среди столбцов матрицы факторных переменных Х имеются линейно зависимые столбцы, и, по свойству определителей матрицы , det(X T X) = 0 , т. е. матрица (X T X) вырождена, а значит, не существует обратной матрицы. Матрица (X T X) -1 используется в построении МНК-оценок. Таким образом, полная мультиколлинеарность не позволяет однозначно оценить параметры исходной модели регрессии.

    К каким трудностям приводит мультиколлинеарность факторов, включенных в модель, и как они могут быть разрешены?

    Мультиколлинеарность может привести к нежелательным последствиям:

    1. оценки параметров становятся ненадежными. Они обнаруживают большие стандартные ошибки. С изменением объема наблюдений оценки меняются (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
    2. затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
    3. становится невозможным определить изолированное влияние факторов на результативный показатель.

    Вид мультиколлинеарности, при котором факторные переменные связаны некоторой стохастической зависимостью, называется частичной. Если между факторными переменными имеется высокая степень корреляции, то матрица (X T X) близка к вырожденной, т. е. det(X T X) ≈ 0.
    Матрица (X T X) -1 будет плохо обусловленной, что приводит к неустойчивости МНК-оценок. Частичная мультиколлинеарность приводит к следующим последствиям:

    • увеличение дисперсий оценок параметров расширяет интервальные оценки и ухудшает их точность;
    • уменьшение t -статистик коэффициентов приводит к неверным выводам о значимости факторов;
    • неустойчивость МНК-оценок и их дисперсий.

    Точных количественных критериев для обнаружения частичной мультиколлинеарности не существует. О наличии мультиколлинеарности может свидетельствовать близость к нулю определителя матрицы (X T X). Также исследуют значения парных коэффициентов корреляции. Если же определитель матрицы межфакторной корреляции близок к единице, то мультколлинеарности нет.

    Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них – исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации -R 2 y(x1...xm) снизится несущественно).

    С помощью какой меры невозможно избавиться от мультиколлинеарности?
    a) увеличение объема выборки;
    b) исключения переменных высококоррелированных с остальными;
    c) изменение спецификации модели;
    d) преобразование случайной составляющей.

    Парные (линейные) и частные коэффициенты корреляции

    Тесноту связи, например между переменными x и y по выборке значений (x i , y i), i=1,n , (1)
    где x и y – средние значения, S x и S y – стандартные отклонения соответствующих выборок.

    Парный коэффициент корреляции изменяется в пределах от –1 до +1. Чем ближе он по абсолютной величине к единице, тем ближе статистическая зависимость между x и y к линейной функциональной. Положительное значение коэффициента свидетельствует о том, что связь между признаками прямая (с ростом x увеличивается значение y), отрицательное значение – связь обратная (с ростом x значение y уменьшается).
    Можно дать следующую качественную интерпретацию возможных значений коэффициента корреляции: если |r|<0.3 – связь практически отсутствует; 0.3≤ |r| < 0.7 - связь средняя; 0.7≤ |r| < 0.9 – связь сильная; 0.9≤ |r| < 0.99 – связь весьма сильная.
    Для оценки мультиколлинеарности факторов используют матрицу парных коэффициентов корреляции зависимого (результативного) признака y с факторными признаками x 1 , x 2 ,…,x m , которая позволяет оценить степень влияния каждого показателя-фактора x j на зависимую переменную y, а также тесноту взаимосвязей факторов между собой. Корреляционная матрица в общем случае имеет вид
    .
    Матрица симметрична, на ее диагонали стоят единицы. Если в матрице есть межфакторный коэффициент корреляции r xjxi >0.7, то в данной модели множественной регрессии существует мультиколлинеарность.
    Поскольку исходные данные, по которым устанавливается взаимосвязь признаков, являются выборкой из некой генеральной совокупности, вычисленные по этим данным коэффициенты корреляции будут выборочными, т. е. они лишь оценивают связь. Необходима проверка значимости, которая отвечает на вопрос: случайны или нет полученные результаты расчетов.
    Значимость парных коэффициентов корреляции проверяют по t- критерию Стьюдента. Выдвигается гипотеза о равенстве нулю генерального коэффициента корреляции: H 0: ρ = 0. Затем задаются параметры: уровень значимости α и число степеней свободы v = n-2. Используя эти параметры, по таблице критических точек распределения Стьюдента находят t кр, а по имеющимся данным вычисляют наблюдаемое значение критерия:
    , (2)
    где r – парный коэффициент корреляции, рассчитанный по отобранным для исследования данным. Парный коэффициент корреляции считается значимым (гипотеза о равенстве коэффициента нулю отвергается) с доверительной вероятностью γ = 1- α, если t Набл по модулю будет больше, чем t крит.
    Если переменные коррелируют друг с другом, то на значении коэффициента корреляции частично сказывается влияние других переменных.

    Частный коэффициент корреляции характеризует тесноту линейной зависимости между результатом и соответствующим фактором при устранении влияния других факторов. Частный коэффициент корреляции оценивает тесноту связи между двумя переменными при фиксированном значении остальных факторов. Если вычисляется, например, r yx 1| x2 (частный коэффициент корреляции между y и x 1 при фиксированном влиянии x 2), это означает, что определяется количественная мера линейной зависимости между y и x 1 , которая будет иметь место, если устранить влияние x 2 на эти признаки. Если исключают влияние только одного фактора, получают частный коэффициент корреляции первого порядка.
    Сравнение значений парного и частного коэффициентов корреляции показывает направление воздействия фиксируемого фактора. Если частный коэффициент корреляции r yx 1| x2 получится меньше, чем соответствующий парный коэффициент r yx 1 , значит, взаимосвязь признаков y и x 1 в некоторой степени обусловлена воздействием на них фиксируемой переменной x 2 . И наоборот, большее значение частного коэффициента по сравнению с парным свидетельствует о том, что фиксируемая переменная x 2 ослабляет своим воздействием связь y и x 1 .
    Частный коэффициент корреляции между двумя переменными (y и x 2) при исключении влияния одного фактора (x 1) можно вычислить по следующей формуле:
    . (3)
    Для других переменных формулы строятся аналогичным образом. При фиксированном x 2
    ;
    при фиксированном x 3
    .
    Значимость частных коэффициентов корреляции проверяется аналогично случаю парных коэффициентов корреляции. Единственным отличием является число степеней свободы, которое следует брать равным v = n – l -2, где l – число фиксируемых факторов.

    Пошаговая регрессия

    Отбор факторов x 1 , x 2 , …,x m , включаемых в модель множественной регрессии, является одним из важнейших этапов эконометрического моделирования. Метод последовательного (пошагового) включения (или исключения) факторов в модель позволяет выбрать из возможного набора переменных именно те, которые усилят качество модели.
    При реализации метода на первом шаге рассчитывается корреляционная матрица. На основе парных коэффициентов корреляции выявляется наличие коллинеарных факторов. Факторы x i и x j признаются коллинеарными, если r xjxi >0.7. В модель включают лишь один из взаимосвязанных факторов. Если среди факторов отсутствуют коллинеарные, то в модель могут быть включены любые факторы, оказывающие существенное влияние на y .

    На втором шаге строится уравнение регрессии с одной переменной, имеющей максимальный по абсолютной величине парный коэффициент корреляции с результативным признаком.

    На третьем шаге в модель вводится новая переменная, имеющая наибольшее по абсолютной величине значение частного коэффициента корреляции с зависимой переменной при фиксированном влиянии ранее введенной переменной.
    При введении в модель дополнительного фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться. Если этого не происходит, т. е. коэффициент множественной детерминации увеличивается незначительно, то ввод нового фактора признается нецелесообразным.

    Пример №1 . По 20 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x1 (% от стоимости фондов на конец года) и от ввода в действие новых основных фондов x2 (%).

    Y X1 X2
    6 10 3,5
    6 12 3,6
    7 15 3,9
    7 17 4,1
    7 18 4,2
    8 19 4,5
    8 19 5,3
    9 20 5,3
    9 20 5,6
    10 21 6
    10 21 6,3
    11 22 6,4
    11 23 7
    12 25 7,5
    12 28 7,9
    13 30 8,2
    13 31 8,4
    14 31 8,6
    14 35 9,5
    15 36 10

    Требуется:

    1. Построить корреляционное поле между выработкой продукции на одного работника и удельным весом рабочих высокой квалификации. Выдвинуть гипотезу о тесноте и виде зависимости между показателями X1 и Y .
    2. Оценить тесноту линейной связи между выработкой продукции на одного работника и удельным весом рабочих высокой квалификации с надежностью 0,9.
    3. Рассчитать коэффициенты линейного уравнения регрессии для зависимости выработки продукции на одного работника от удельного веса рабочих высокой квалификации.
    4. Проверить статистическую значимость параметров уравнения регрессии с надежностью 0,9 и построить для них доверительные интервалы.
    5. Рассчитать коэффициент детерминации. С помощью F -критерия Фишера оценить статистическую значимость уравнения регрессии с надежностью 0,9.
    6. Дать точечный и интервальный прогноз с надежностью 0,9 выработки продукции на одного работника для предприятия, на котором высокую квалификацию имеют 24% рабочих.
    7. Рассчитать коэффициенты линейного уравнения множественной регрессии и пояснить экономический смысл его параметров.
    8. Проанализировать статистическую значимость коэффициентов множественного уравнения с надежностью 0,9 и построить для них доверительные интервалы.
    9. Найти коэффициенты парной и частной корреляции. Проанализировать их.
    10. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.
    11. С помощью F -критерия Фишера оценить адекватность уравнения регрессии с надежностью 0,9.
    12. Дать точечный и интервальный прогноз с надежностью 0,9 выработки продукции на одного работника для предприятия, на котором высокую квалификацию имеют 24% рабочих, а ввод в действие новых основных фондов составляет 5%.
    13. Проверить построенное уравнение на наличие мультиколлинеарности по: критерию Стьюдента; критерию χ2. Сравнить полученные результаты.

    Решение проводим с помощью калькулятора . Далее приводится ход решения п.13.
    Матрица парных коэффициентов корреляции R:

    - y x 1 x 2
    y 1 0.97 0.991
    x 1 0.97 1 0.977
    x 2 0.991 0.977 1

    При наличии мультиколлинеарности определитель корреляционной матрицы близок к нулю. Для нашего примера: det = 0.00081158 , что свидетельствует о наличии сильной мультиколлинеарности.
    Для отбора наиболее значимых факторов x i учитываются следующие условия:
    - связь между результативным признаком и факторным должна быть выше межфакторной связи;
    - связь между факторами должна быть не более 0.7. Если в матрице есть межфакторный коэффициент корреляции r xjxi > 0.7, то в данной модели множественной регрессии существует мультиколлинеарность.;
    - при высокой межфакторной связи признака отбираются факторы с меньшим коэффициентом корреляции между ними.
    В нашем случае r x 1 x 2 имеют |r|>0.7, что говорит о мультиколлинеарности факторов и о необходимости исключения одного из них из дальнейшего анализа.
    Анализ первой строки этой матрицы позволяет произвести отбор факторных признаков, которые могут быть включены в модель множественной корреляционной зависимости. Факторные признаки, у которых |r yxi | 0.3 – связь практически отсутствует; 0.3 ≤ |r| ≤ 0.7 - связь средняя; 0.7 ≤ |r| ≤ 0.9 – связь сильная; |r| > 0.9 – связь весьма сильная.
    Проверим значимость полученных парных коэффициентов корреляции с помощью t-критерия Стьюдента. Коэффициенты, для которых значения t-статистики по модулю больше найденного критического значения, считаются значимыми.
    Рассчитаем наблюдаемые значения t-статистики для r yx 1 по формуле:

    где m = 1 - количество факторов в уравнении регрессии.

    По таблице Стьюдента находим Tтабл
    t крит (n-m-1;α/2) = (18;0.025) = 2.101
    Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
    Рассчитаем наблюдаемые значения t-статистики для r yx 2 по формуле:

    Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значимю
    Таким образом, связь между (y и x x 1), (y и x x 2) является существенной.
    Наибольшее влияние на результативный признак оказывает фактор x 2 (r = 0.99), значит, при построении модели он войдет в регрессионное уравнение первым.
    Тестирование и устранение мультиколлинеарности .
    Наиболее полным алгоритмом исследования мультиколлинеарности является алгоритм Фаррара-Глобера. С его помощью тестируют три вида мультиколлинеарности:
    1. Всех факторов (χ 2 - хи-квадрат).
    2. Каждого фактора с остальными (критерий Фишера).
    3. Каждой пары факторов (критерий Стьюдента).
    Проверим переменные на мультиколлинеарность методом Фаррара-Глоубера по первому виду статистических критериев (критерий "хи-квадрат").
    Формула для расчета значения статистики Фаррара-Глоубера:
    χ 2 = -ln(det[R])
    где m = 2 - количество факторов, n = 20 - количество наблюдений, det[R] - определитель матрицы парных коэффициентов корреляции R.
    Сравниваем его с табличным значением при v = m/2(m-1) = 1 степенях свободы и уровне значимости α. Если χ 2 > χ табл 2 , то в векторе факторов есть присутствует мультиколлинеарность.
    χ табл 2 (1;0.05) = 3.84146
    Проверим переменные на мультиколлинеарность по второму виду статистических критериев (критерий Фишера).

    Проверим переменные на мультиколлинеарность по третьему виду статистических критериев (критерий Стьюдента). Для этого найдем частные коэффициенты корреляции.
    Частные коэффициенты корреляции .
    Коэффициент частной корреляции отличается от простого коэффициента линейной парной корреляции тем, что он измеряет парную корреляцию соответствующих признаков (y и x i) при условии, что влияние на них остальных факторов (x j) устранено.
    На основании частных коэффициентов можно сделать вывод об обоснованности включения переменных в регрессионную модель. Если значение коэффициента мало или он незначим, то это означает, что связь между данным фактором и результативной переменной либо очень слаба, либо вовсе отсутствует, поэтому фактор можно исключить из модели.


    Теснота связи низкая.
    Определим значимость коэффициента корреляции r yx 1 /x 2 .Как видим, связь y и x 2 при условии, что x 1 войдет в модель, снизилась. Отсюда можно сделать вывод, что ввод в регрессионное уравнение x 2 остается нецелесообразным.
    Можно сделать вывод, что при построении регрессионного уравнения следует отобрать факторы x 1 , x 2 .

    Пример №2 . По 30 наблюдениям матрица парных коэффициентов корреляции оказалась следующей:

    y x 1 x 2 x 3
    y 1,0
    x 1 0,30 1,0
    x 2 0,60 0,10 1,0
    x 3 0,40 0,15 0,80 1,0
    Оцените мультиколлинеарность факторов. Постройте уравнение регрессии в стандартном масштабе и сделайте выводы.
    Отметим, что в ряде случаев мультиколлинеарность не является таким уж серьезным «злом», чтобы прилагать существенные усилия по ее выявлению и устранению. В основном, все зависит от целей исследования.
    Если основная задача модели - прогноз будущих значений зависимой переменной, то при достаточно большом коэффициенте детерминации R2(gt; 0,9) наличие мультиколлинеарности обычно не сказывается на прогнозных качествах модели (если в будущем между коррелированными переменными будут сохраняться те же отношения, что и ранее).
    Если необходимо определить степень влияния каждой из объясняющих переменных на зависимую переменную, то мультиколлинеарность, приводящая к увеличению стандартных ошибок, скорее всего, исказит истинные зависимости между переменными. В этой ситуации мультиколлинеарность является серьезной проблемой.
    Единого метода устранения мультиколлинеарности, годного в любом случае, не существует. Это связано с тем, что причины и последствия мультиколлинеарности неоднозначны и во многом зависят от результатов выборки.
    Исключение переменной(ых) из модели
    Простейшим методом устранения мультиколлинеарности является исключение из модели одной или ряда коррелированных переменных. При применении данного метода необходима определенная осмотрительность. В данной ситуации возможны ошибки спецификации, поэтому в прикладных эконометрических моделях желательно не исключать объясняющие переменные до тех пор, пока мультиколлинеарность не станет серьезной проблемой.
    Получение дополнительных данных или новой выборки
    Поскольку мультиколлинеарность напрямую зависит от выборки, то, возможно, при другой выборке мультиколлинеарности не будет либо она не будет столь серьезной. Иногда для уменьшения мультиколлинеарности достаточно увеличить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных сокращает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серьезными издержками. Кроме того, такой подход может усилить автокорреляцию. Эти проблемы ограничивают возможность использования данного метода.
    Изменение спецификации модели
    В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо изменяется форма модели, либо добавляются объясняющие переменные, не учтенные в первоначальной модели, но существенно влияющие на зависимую переменную. Если данный метод имеет основания, то его использование уменьшает сумму квадратов отклонений, тем самым сокращая стандартную ошибку регрессии. Это приводит к уменьшению стандартных ошибок коэффициентов.
    Использование предварительной информации о некоторых параметрах
    Иногда при построении модели множественной регрессии можно воспользоваться предварительной информацией, в частности известными значениями некоторых коэффициентов регрессии.
    Вполне вероятно, что значения коэффициентов, рассчитанные для каких-либо предварительных (обычно более простых) моделей либо для аналогичной модели по ранее полученной выборке, могут быть использованы для разрабатываемой в данный момент модели.
    Отбор наиболее существенных объясняющих переменных. Процедура последовательного присоединения элементов
    Переход к меньшему числу объясняющих переменных может уменьшить дублирование информации, доставляемой сильно взаимозависимыми признаками. Именно с этим мы сталкиваемся в случае мультиколлинеарности объясняющих переменных.
    Пусть

    Множественный коэффициент
    корреляции между зависимой переменной Y и набором объясняющих переменных X 1,X 2,...,Xm. Он определяется как обычный парный коэффициент корреляции между Y и линейной функцией
    регрессии Y = b0 + KX1 + b2X2+... + bmXm. Пусть amp; = R-1 - матрица, обратная к матрице R:


    Тогда квадрат коэффициента Ry.X = Rr(xi,x2,..,x) может быть вычислен по формуле:


    Подправленная на несмещенность оценка R*2.X коэффициента детерминации R2y.X имеет вид:

    (Если поформуле (6.7) получают отрицательное число, то полагают


    Нижняя доверительная граница для

    определяется
    по формуле:

    На практике, при решении вопроса о том, какие объясняющие переменные следует включать в модель, часто используют процедуру последовательного присоединения элементов.
    (j = 1, 2,..., m) . При этом

    совпадает с квадратом обычного
    парного коэффициента корреляции

    Пусть


    тогда наиболее информативной будет переменная xp. Затем рассчитывают подправленный на несмещенность коэффициент
    (при m = 1) и его нижнюю доверительную границу R2min (1) .


    более информативной будет пара jxp,xq). Затемрассчитывают подправленный на несмещенность коэффициент(при m = 2)
    и его нижнюю доверительную границу R2min (2) .

    Процедуру продолжают до тех пор, когда на шаге (к +1) выполнится условие:
    Тогда в модель включают наиболее информативные переменные, полученные на первых к шагах. Отметим, что в расчетах используют формулы (6.7) и (6.8), в которых вместо т берут соответствующее значение номера шага к.
    На самом деле этот метод не гарантирует, что мы избавимся от мультиколлинеарности.
    Используют и другие методы устранения мультиколлинеарности.
    Пример 6.1. Имеются следующие условные данные (табл. 6.1):
    Таблица 6.1
    Данные для метода последовательного включения


    Х1

    Х2

    Х3

    У

    1

    1,5

    0,7

    12

    2

    2,5

    1,2

    20

    3

    1

    1,4

    15

    4

    5,5

    1,9

    41

    5

    3

    2,5

    33

    6

    3

    3,1

    35

    7

    2,8

    3,5

    38

    8

    0,5

    4

    28

    9

    4

    3,8

    47

    10

    2

    5,3

    40

    Рассмотрим влияние на зависимую переменную каждой из объясняющих переменных в отдельности. Вычисляя парные коэффициенты корреляции, получим, что наибольшее значение имеет коэффициент

    Тогда:


    Рассмотрим влияние на зависимую переменную пар переменных (x1, x2) и (x1, x3). Сначала рассмотрим влияние пары переменных (x1, x2).



    icuvum uvjpcuuivi, ыхсдул рсьимслдсіцшім мсіида ііи^ісдиьсіїсльпи-
    го присоединения переменных, в уравнение следует включить две объясняющие переменные. Следовательно, теоретическое уравнение примет вид:
    Гребневой метод
    Рассмотрим «гребневой метод» («ридж-регрессия») устранения мультиколлинеарности. Метод был предложен А. Э. Хоэрлом в 1962 г. и применяется, когда матрица (xtX) близка к вырожденной. К диагональным элементам матрицы (xtX) добавляют некоторое небольшое число (от 0,1 до 0,4). При этом получают смещенные оценки параметров уравнения. Но стандартные ошибки таких оценок в случае мультиколлинеарности ниже ошибок даваемых обычным методом наименьших квадратов.
    Пример 6.2. Исходные данные представлены « табл6 2 Коэффициент корреляции объясняющих переменных

    что
    свидетельствует о сильной мультиколлинеарности.
    Таблица 6.2
    Данные для исследования мультиколлинеарности гребневым методом


    x1

    x2

    У

    1

    1,4

    7

    2

    3,1

    12


    Тогда получим уравнение у = 2,63 +1,37x1 + 1,95x2. Диагональные элементы обратной матрицы значительно снизятся и будут равны z00 = 0,45264, z11 = 1,57796, z00 = 0,70842, что приводит к снижению стандартных ошибок коэффициентов.
    Резюме
    Среди основных последствий, к которым может привести мультиколлинеарность, можно выделить следующие:
    1. при проверке основной гипотезы о незначимости коэффициентов множественной регрессии с помощью t-критерия в большинстве случаев она принимается, однако само уравнение регрессии при проверке с помощью A-критерия оказывается значимым, что говорит о завышенной величине коэффициента множественной корреляции;
    2. полученные оценки коэффициентов уравнения множественной регрессии в основном неоправданно завышены или имеют неправильные знаки;
    3. добавление или исключение из исходных данных одного- двух наблюдений оказывает сильное влияние на оценки коэффициентов модели;
    4. наличие мультиколлинеарности в модели множественной регрессии может сделать ее непригодной для дальнейшего применения (например, для построения прогнозов).
    Вопросы для самопроверки
    1. Что такое мультиколлинеарность?
    2. Какие показатели свидетельствуют о наличии мультиколлинеарности?
    3. Чему равен определитель матрицы XTX в случае совершенной мультиколлинеарности?
    4. Что можно сказать о смысле коэффициентов при объясняющих переменных в случае мультиколлинеарности?
    5. Какое преобразование производят в гребневом методе, к чему оно приводит?
    6. Каков порядок действий в методе последовательного увеличения числа объясняющих переменных?
    7. Что показывает коэффициент корреляции?
    8. Что показывает частный коэффициент корреляции?