Проектирование лвс сетей. Привет студент

Введение

Современное общество вступило в постиндустриальную эпоху, которая характеризуется тем, что информация стала важнейшим ресурсом развития экономики и общества. В русле общего развития высоких технологий основной вклад в информатизацию всех сфер жизни вносят компьютерные технологии.

Одну из характерных черт нынешнего этапа развития информационных технологий можно определить словами "объединение" или "интеграция". Объединяются аналоговое и цифровое, телефон и компьютер, объединяются в одном потоке речь, данные, аудио- и видеосигналы, объединяются в единой технологии техника и искусство (мультимедиа и гипермедиа). Оборотной стороной этого процесса является «разделение» или «коллективное использование» (sharing). Неотъемлемой частью этого процесса является развитие компьютерных сетей.

Компьютерные сети, по сути, являются распределенными системами. Основным признаком таких систем является наличие нескольких центров обработки данных. Компьютерные сети, называемые так же вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации – компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет группу взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютеры и мультиплексирования данных, получившие развитии в различных телекоммуникационных системах.

Локальная вычислительная сеть (ЛВС) или LAN это группа персональных компьютеров или периферийных устройств, объединенных между собой высокоскоростным каналом передачи данных в расположении одного или многих близлежащих зданий. Основная задача, которая ставится при построении локальных вычислительных сетей – это создание телекоммуникационной инфраструктуры компании, обеспечивающей решение поставленных задач с наибольшей эффективностью. Существует ряд причин, для объединения отдельных персональных компьютеров в ЛВС:

Во-первых, совместное использование ресурсов позволяет нескольким ПК или другим устройствам осуществлять совместный доступ к отдельному диску (файл-серверу), дисководу DVD-ROM, принтерам, плоттерам, к сканерам и другому оборудованию, что снижает затраты на каждого отдельного пользователя.

Во-вторых, кроме совместного использования дорогостоящих периферийных устройств ЛВЛ позволяет аналогично использовать сетевые версии прикладного программного обеспечения.

В-третьих, ЛВС обеспечивает новые формы взаимодействия пользователей в одном коллективе, например работе над общим проектом.

В–четвертых, ЛВС дают возможность использовать общие средства связи между различными прикладными системами (коммуникационные услуги, передача данных и видеоданных, речи и т.д.).

Можно выделить три принципа ЛВС:

1) Открытость возможность подключения дополнительных компьютеров и других устройств, а так же линий (каналов) связи без изменения технических и программных средств существующих компонентов сети.

2) Гибкость – сохранение работоспособности при изменении структуры в результате выхода из строя любого компьютера или линии связи.

3) Эффективность обеспечение требуемого качества обслуживания пользователей при минимальных затратах.

У локальной сети есть следующие отличительные признаки:

Высокая скорость передачи данных (до 10 Гб), большая пропускная способность;

Низкий уровень ошибок передачи (высококачественные каналы передачи);

Эффективный быстродействующий механизм управления обменом данных;

Точно определенное число компьютеров, подключаемых к сети. В настоящее время трудно представить какую либо организацию без установленной в ней локальной сети, все организации стремятся модернизировать свою работу с помощью локальных сетей.

В данном курсовом проекте описано создание локальной сети на базе технологии Gigabit Ethernet, путем объединения нескольких домов, и организация выхода в Интернет.

1. Создание локальной вычислительной сети

1.1 Топологии сетей

Топология - это способ физического соединения компьютеров в локальную сеть.

Существует три основных топологии, применяемые при построении компьютерных сетей:

Топология "Шина";

Топология "Звезда";

Топология "Кольцо".

При создании сети с топологией «Шина» все компьютеры подключаются к одному кабелю (рисунок 1.1). На его концах должны быть расположены терминаторы. По такой топологии строятся 10 Мегабитные сети 10Base-2 и 10Base-5. В качестве кабеля используется Коаксиальные кабели.

Рисунок 1.1 – Топология «Шина»

Пассивная топология, строится на использовании одного общего канала связи и коллективного использования его в режиме разделения времени. Нарушение общего кабеля или любого из двух терминаторов приводит к выходу из строя участка сети между этими терминаторами (сегмент сети). Отключение любого из подключенных устройств на работу сети никакого влияния не оказывает. Неисправность канала связи выводит из строя всю сеть. Все компьютеры в сети «слушают» несущую и не участвуют в передаче данных между соседями. Пропускная способность такой сети снижается с увеличением нагрузки или при увеличении числа узлов. Для соединения кусков шины могут использоваться активные устройства - повторители (repeater) с внешним источником питания.

Топология «Звезда» предполагает подключение каждого компьютера отдельным проводом к отдельному порту устройства, называемого концентратором или повторителем (репитер), или хабом (Hub) (рисунок 1.2).

Рисунок 1.2 – Топология «Звезда»

Концентраторы могут быть как активные, так и пассивные. Если между устройством и концентратором происходит разрыв соединения, то вся остальная сеть продолжает работать. Правда, если этим устройством был единственный сервер, то работа будет несколько затруднена. При выходе из строя концентратора сеть перестанет работать.

Данная сетевая топология наиболее удобна при поиске повреждений сетевых элементов: кабеля, сетевых адаптеров или разъемов. При добавлении новых устройств «звезда» также удобней по сравнению с топологией общая шина. Также можно принять во внимание, что 100 и 1000 Мбитные сети строятся по топологии «Звезда».

Топология «Кольцо» активная топология. Все компьютеры в сети связаны по замкнутому кругу (рисунок 1.3). Прокладка кабелей между рабочими станциями может оказаться довольно сложной и дорогостоящей, если они расположены не по кольцу, а, например, в линию. В качестве носителя в сети используется витая пара или оптоволокно. Сообщения циркулируют по кругу. Рабочая станция может передавать информацию другой рабочей станции только после того, как получит право на передачу (маркер), поэтому коллизии исключены. Информация передается по кольцу от одной рабочей станции к другой, поэтому при выходе из строя одного компьютера, если не принимать специальных мер выйдет из строя вся сеть.

Время передачи сообщений возрастает пропорционально увеличению числа узлов в сети. Ограничений на диаметр кольца не существует, т.к. он определяется только расстоянием между узлами в сети.

Кроме приведенных выше топологий сетей широко применяются т. н. гибридные топологии: «звезда-шина», «звезда-кольцо», «звезда-звезда».

Рисунок 1.3 – Топология «Кольцо»

Кроме трех рассмотренных основных, базовых топологий нередко применяется также сетевая топология «дерево» (tree), которую можно рассматривать как комбинацию нескольких звезд. Как и в случае звезды, дерево может быть активным, или истинным, и пассивным. При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы).

Применяются довольно часто и комбинированные топологии, среди которых наибольшее распространение получили звездно-шинная и звездно-кольцевая. В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. В этом случае к концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты, то есть на самом деле реализуется физическая топология «шина», включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. Таким образом, пользователь получает возможность гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количество компьютеров, подключенных к сети.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы, к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов все линии связи образуют замкнутый контур. Данная топология позволяет комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети.

В данном курсовом проекте будет использоваться топология «звезда», которая обладает следующими преимуществами:

1. выход из строя одной рабочей станции не отражается на работе всей сети в целом;

2. хорошая масштабируемость сети;

3. лёгкий поиск неисправностей и обрывов в сети;

4. высокая производительность сети (при условии правильного проектирования);

5. гибкие возможности администрирования.

1.2 Кабельная система

Выбор кабельной подсистемы диктуется типом сети и выбранной топологией. Требуемые же по стандарту физические характеристики кабеля закладываются при его изготовлении, о чем и свидетельствуют нанесенные на кабель маркировки. В результате, сегодня практически все сети проектируются на базе UTP и волоконно-оптических кабелей, коаксиальный кабель применяют лишь в исключительных случаях и то, как правило, при организации низкоскоростных стеков в монтажных шкафах.

В проекты локальных вычислительных сетей (стандартных) закладываются на сегодня всего три вида кабелей:

коаксиальный (двух типов):

Тонкий коаксиальный кабель (thin coaxial cable);

Толстый коаксиальный кабель (thick coaxial cable).

витая пара (двух основных типов):

Неэкранированная витая пара (unshielded twisted pair - UTP);

Экранированная витая пара (shielded twisted pair - STP).

волоконно-оптический кабель (двух типов):

Многомодовый кабель (fiber optic cable multimode);

Одномодовый кабель (fiber optic cable single mode).

Не так давно коаксиальный кабель был самым распространенным типом кабеля. Это объясняется двумя причинами: во-первых, он был относительно недорогим, легким, гибким и удобным в применении; во-вторых, широкая популярность коаксиального кабеля привела к тому, что он стал безопасным и простым в установке.

Самый простой коаксиальный кабель состоит из медной жилы, изоляции, ее окружающей, экрана в виде металлической оплетки и внешней оболочки.

Если кабель кроме металлической оплетки имеет и слой «фольги», он называется кабелем с двойной экранизацией (рисунок 1.4). При наличии сильных помех можно воспользоваться кабелем с учетверенной экранизацией, он состоит из двойного слоя фольги и двойного слоя металлической оплетки.

Рисунок 1.4 – Структура коаксиального кабеля

Оплетка, ее называют экраном, защищает передаваемые по кабелям данные, поглощая внешние электромагнитные сигналы, называемые помехами или шумом, таким образом, экран не позволяет помехам исказить данные.

Электрические сигналы передаются по жиле. Жила – это один провод или пучок проводов. Жила изготавливается, как правило, из меди. Проводящая жила и металлическая оплетка не должны соприкасаться, иначе произойдет короткое замыкание и помехи исказят данные.

Коаксиальный кабель более помехоустойчивый, затухание сигнала в нем меньше, чем в витой паре.

Затухание – это уменьшение величины сигнала при его перемещении по кабелю.

Тонкий коаксиальный кабель – гибкий кабель диаметром около 5 мм. Он применим практически для любого типа сетей. Подключается непосредственно к плате сетевого адаптера с помощью Т-коннектора.

У кабеля разъемы называются BNC коннекторы. Тонкий коаксиальный кабель способен передавать сигнал на расстоянии 185 м, без его замедленного затухания.

Тонкий коаксиальный кабель относится к группе, которая называется семейством RG– 58. Основная отличительная особенность этого семейства медная жила.

RG 58/U – сплошная медная жила.

RG 58/U – переплетенные провода.

RG 58 C/U- военный стандарт.

RG 59 – используется для широкополосной передачи.

RG 62 – используется в сетях Archet.

Толстый коаксиальный кабель относительно жесткий кабель с диаметром около 1 см. Иногда его называют стандартом Ethernet, потому что этот тип кабеля был предназначен для данной сетевой архитектуры. Медная жила этого кабеля толще, чем у тонкого кабеля, поэтому он передает сигналы дальше. Для подключения к толстому кабелю применяют специальное устройство трансивер.

Трансивер снабжен специальным коннектором, который называется «зуб вампира» или пронзающий ответвитель. Он проникает через изоляционный слой и вступает в контакт с проводящей жилой. Чтобы подключить трансивер к сетевому адаптеру надо кабель трансивера подключить к коннектору AUI – порта к сетевой плате.

Витая пара – это два перевитых вокруг друг друга изоляционных медных провода. Существует два типа тонкого кабеля: неэкранированная витая пара (UTP) и экранированная витая пара (STP) (рисунок 1.5).

Рисунок 1.5 – Неэкранированная и экранированная витая пара

Несколько витых пар часто помещают в одну защитную оболочку. Их количество в таком кабеле может быть разным. Завивка проводов позволяет избавиться от электрических помех, наводимых соседними парами и другими источниками (двигателями, трансформаторами).

Неэкранированная витая пара (спецификация 10 Base T) широко используется в ЛВС, максимальная длина сегмента составляет 100 м.

Неэкранированная витая пара состоит из 2х изолированных медных проводов. Существует несколько спецификаций, которые регулируют количество витков на единицу длины – в зависимости от назначения кабеля.

1) Традиционный телефонный кабель, по которому можно передавать только речь.

2) Кабель, способный передавать данные со скоростью до 4 Мбит/с. Состоит из 4х витых пар.

3) Кабель, способный передавать данные со скоростью до 10 Мбит/с. Состоит из 4х витых пар с 9-ю витками на метр.

4) Кабель, способный передавать данные со скоростью до 16 Мбит/с. Состоит из 4х витых пар.

5) Кабель, способный передавать данные со скоростью до 100 Мбит/с. Состоит из 4х витых пар медного провода.

Одной из потенциальных проблем для всех типов кабелей являются перекрестные помехи.

Перекрестные помехи – это перекрестные наводки, вызванные сигналами в смежных проводах. Неэкранированная витая пара особенно страдает от этих помех. Для уменьшения их влияния используют экран.

Кабель, экранированной витой пары (STP) имеет медную оплетку, которая обеспечивает большую защиту, чем неэкранированная витая пара. Пары проводов STP обмотаны фольгой. В результате экранированная витая пара обладает прекрасной изоляцией, защищающей передаваемые данные от внешних помех.

Следовательно, STP по сравнению с UTP меньше подвержена воздействию электрических помех и может передавать сигналы с большей скоростью и на большие расстояния.

Для подключения витой пары к компьютеру используют телефонные коннекторы RG- 45.


Рисунок 1.6 – Структура оптоволоконного кабеля

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это относительно надежный (защищенный) способ передачи, поскольку электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя скрыть и перехватить данные, от чего не застрахован любой кабель, проводящий электрические сигналы.

Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается.

Оптическое волокно – чрезвычайно тонкий стеклянный цилиндр, называемый жилой, покрытый слоем стекла, называемого оболочкой, с иным, чем у жилы, коэффициентом преломления (рисунок 1.6). Иногда оптоволокно производят из пластика, он проще в использовании, но имеет худшие характеристики по сравнению со стеклянным.

Каждое стеклянное оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами. Одно из них служит для передачи сигнала, другой для приема.

Передача по оптоволоконному кабелю не подвержена электрическим помехам и ведется с чрезвычайно высокой скоростью (в настоящее время до 100Мбит/сек, теоретически возможная скорость – 200000 Мбит/сек). По нему можно передавать данные на многие километры.

В данном курсовом проекте будет использованна «Витая пара» категории 5Е и «Оптоволоконный кабель».

1.3 Технология сети Gigabit Ethernet

При организации взаимодействия узлов в локальных сетях основная роль отводится протоколу канального уровня. Однако для того, чтобы канальный уровень мог справиться с этой задачей, структура локальных сетей должна быть вполне определенной, так, например, наиболее популярный протокол канального уровня - Ethernet - рассчитан на параллельное подключение всех узлов сети к общей для них шине - отрезку коаксиального кабеля. Подобный подход, заключающийся в использовании простых структур кабельных соединений между компьютерами локальной сети, соответствовал основной цели, которую ставили перед собой разработчики первых локальных сетей во второй половине 70-х годов. Эта цель заключалась в нахождении простого и дешевого решения для объединения нескольких десятков компьютеров, находящихся в пределах одного здания в вычислительную сеть.

Данная технология потеряла свою практичность, так как сейчас в локальные сети объединяются не десятки, а сотни компьютеров находящихся не только в разных зданиях, но и в разных районах. Поэтому выбираем более высокую скорость и надежность передачи информации. Эти требования выполняются технологией Gigabit Ethernet 1000Base-T.

Gigabit Ethernet 1000Base-T, основана на витой паре и волоконно-оптическом кабеле. Поскольку технология Gigabit Ethernet совместима с 10 Mbps и 100Mbps Ethernet, возможен легкий переход на данную технологию без инвестирования больших средств в программное обеспечение, кабельную структуру и обучение персонала.

Технология Gigabit Ethernet – это расширение IEEE 802.3 Ethernet, использующее такую же структуру пакетов, формат и поддержку протокола CSMA/CD, полного дуплекса, контроля потока и прочее, но при этом предоставляя теоретически десятикратное увеличение производительности.

CSMA/CD (Carrier-Sense Multiple Access with Collision Detection – множественный доступ с контролем несущей и обнаружением коллизий) – технология множественного доступа к общей передающей среде в локальной компьютерной сети с контролем коллизий. CSMA/CD относится к децентрализованным случайным методам. Он используется как в обычных сетях типа Ethernet, так и в высокоскоростных сетях (Fast Ethernet, Gigabit Ethernet).

Так же называют сетевой протокол, в котором используется схема CSMA/CD. Протокол CSMA/CD работает на канальном уровне в модели OSI.

Характеристики и области применения этих популярных на практике сетей связаны именно с особенностями используемого метода доступа. CSMA/CD является модификацией «чистого» Carrier Sense Multiple Access (CSMA).

Если во время передачи фрейма рабочая станция обнаруживает другой сигнал, занимающий передающую среду, она останавливает передачу, посылает jam signal и ждет в течение случайного промежутка времени (известного как «backoff delay» и находимого с помощью алгоритма truncared binary exponential backoff), перед тем как снова отправить фрейм.

Обнаружение коллизий используется для улучшения производительности CSMA с помощью прерывания передачи сразу после обнаружения коллизии и снижения вероятности второй коллизии во время повторной передачи.

Методы обнаружения коллизий зависят от используемого оборудования, но на электрических шинах, таких как Ethernet коллизии могут быть обнаружены сравнением передаваемой и получаемой информации. Если она различается, то другая передача накладывается на текущую (возникла коллизия) и передача прерывается немедленно. Посылается jam signal, что вызывает задержку передачи всех передатчиков на произвольный интервал времени, снижая вероятность коллизии во время повторной попытки.

1.4 Аппаратное обеспечение

Выбору аппаратного обеспечения нужно уделить особое внимание, немалую роль играет возможность расширения системы и простота ее модернизации, поскольку именно это позволяет обеспечить требуемую производительность не только на текущий момент времени, но и в будущем.

Наибольший интерес представляет максимальный объем оперативной памяти, который можно использовать на данном сервере, возможность установки более мощного процессора, а так же второго процессора (если планируется использование операционной системы, поддерживающей двухпроцессорную конфигурацию). Немаловажным так же остается вопрос о том, какую конфигурацию дисковой подсистемы можно использовать на данном сервере, в первую очередь, какой объем дисков, максимальное их количество.

Несомненно, что жизненно важным параметром любого сервера является его качественное и бесперебойное питание. В связи с этим необходимо проверить наличие у сервера нескольких (хотя бы двух) блоков питания. Обычно эти два блока питания работают параллельно, т.е. при выходе из строя оного, сервер продолжает работать, получая питание от другого (исправного) блока питания. При этом должна так же быть возможность их «горячей» замены. И, само собой разумеется, необходим источник бесперебойного питания. Его наличие позволяет в случае пропадания напряжения в электросети, по крайней мере, корректно завершить работу операционной системы и включить сервер.

Высокая надежность серверов достигается путем реализации комплекса мер, касающихся как обеспечения необходимого теплообмена в корпусе, контроля температуры важнейших компонентов, слежения за рядом других параметров, так и полного или частичного дублирования подсистем.

Также необходимо уделить внимание выбору дополнительных аппаратных компонентов сети. При выборе сетевого оборудования стоит учитывать топологию сети и кабельную систему, на которой она выполнена.

· Уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

· Скорость передачи информации и возможность ее дальнейшего увеличения;

· Возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

· Метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

· Разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

· Стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов).

Минимальные требования к серверу:

CPU AMD Athlon64 X2 6000+ 3,1ГГц;

Сетевые адаптеры Dual NC37H с сетевой картой TCP/IP Offload Engine;

ОЗУ 8 Гб;

HDD 2x500 Гб Seagate Barracuda 7200 об/мин.

1.5 Программное обеспечение

Программное обеспечение вычислительных сетей состоит из трех составляющих:

1) автономных операционных систем (ОС), установленных на рабочих станциях;

2) сетевых операционных систем, установленных на выделенных серверах, которые являются основой любой вычислительной сети;

3) сетевых приложений или сетевых служб.

В качестве автономных ОС для рабочих станций, как правило, используются современные 32-разрядные операционные системы – Windows 95/98, Windows 2000, Windows XP, Windows VISTA.

В качестве сетевых ОС в вычислительных сетях применяются:

ОС NetWare фирмы Novell;

Сетевые ОС фирмы Microsoft (ОС Windows NT, Microsoft Windows 2000 Server, Windows Server 2003, Windows Server 2008)

Windows Server 2008 обеспечивает три основных преимущества:

1) Улучшенный контроль

Windows Server 2008 позволяет лучше контролировать инфраструктуру серверов и сети и сконцентрироваться на решении задач первоочередной важности благодаря следующему.

Упрощенное управление ИТ-инфраструктурой с помощью новых средств, обеспечивающих единый интерфейс для настройки и мониторинга серверов и возможность автоматизации рутинных операций.

Оптимизация процессов установки Windows Server 2008 и управления ими за счет развертывания только нужных ролей и функций. Настройка конфигурации серверов уменьшает количество уязвимых мест и снижает потребность в обновлении программного обеспечения, что приводит к упрощению текущего обслуживания.

Эффективное обнаружение и устранение неполадок с помощью мощных средств диагностики, дающих наглядное представление об актуальном состоянии серверной среды, как физической, так и виртуальной.

Улучшенный контроль над удаленными серверами, например серверами филиалов. Благодаря оптимизации процессов администрирования серверов и репликации данных вы сможете лучше обслуживать своих пользователей и избавитесь от некоторых управленческих проблем.

Облегченное управление веб-серверами с помощью Internet Information Services 7.0 - мощной веб-платформы для приложений и служб. Эта модульная платформа имеет более простой интерфейс управления на основе задач и интегрированные средства управления состоянием веб-служб, обеспечивает строгий контроль над взаимодействием узлов, а также содержит ряд усовершенствований по части безопасности.

Улучшенный контроль параметров пользователей с помощью расширенной групповой политики.

2) Повышенная гибкость

Перечисленные ниже возможности Windows Server 2008 позволяют создавать гибкие и динамичные центры данных, которые отвечают непрерывно меняющимся потребностям компании.

Встроенные технологии для виртуализации на одном сервере нескольких операционных систем (Windows, Linux и т. д.). Благодаря этим технологиям, а также более простым и гибким политикам лицензирования сегодня можно без труда воспользоваться преимуществами виртуализации, в том числе экономическими.

Централизованный доступ к приложениям и беспрепятственная интеграция удаленно опубликованных приложений. Кроме того, нужно отметить возможность подключения к удаленным приложениям через межсетевой экран без использования VPN - это позволяет быстро реагировать на потребности пользователей, независимо от их местонахождения.

Широкий выбор новых вариантов развертывания.

Гибкие и функциональные приложения связывают работников друг с другом и с данными, обеспечивая таким образом наглядное представление, совместное использование и обработку информации.

Взаимодействие с существующей средой.

Развитое и активное сообщество для поддержки на всем протяжении жизненного цикла.

3) Улучшенная защита

Windows Server 2008 усиливает безопасность операционной системы и среды в целом, формируя надежный фундамент, на котором вы сможете развивать свой бизнес. Защита серверов, сетей, данных и учетных записей пользователей от сбоев и вторжений обеспечивается Windows Server за счет следующего.

Усовершенствованные функции безопасности уменьшают уязвимость ядра сервера, благодаря чему повышается надежность и защищенность серверной среды.

Технология защиты сетевого доступа позволяет изолировать компьютеры, которые не отвечают требованиям действующих политик безопасности. Возможность принудительно обеспечивать соблюдение требований безопасности является мощным средством защиты сети.

Усовершенствованные решения по составлению интеллектуальных правил и политик, улучшающих управляемость и защищенность сетевых функций, позволяют создавать регулируемые политиками сети.

Защита данных, которая разрешает доступ к ним только пользователям с надлежащим контекстом безопасности и исключает потерю в случае поломки оборудования.

Защита от вредоносных программ с помощью функции контроля учетных записей с новой архитектурой проверки подлинности.

Повышенная устойчивость системы, уменьшающая вероятность потери доступа, результатов работы, времени, данных и контроля.

Для пользователей локальных вычислительных сетей большой интерес представляет набор сетевых служб, с помощью которых он получает возможность просмотреть список имеющихся в сети компьютеров, прочесть удаленный файл, распечатать документ на принтере, установленном на другом компьютере в сети или послать почтовое сообщение.

Реализация сетевых служб осуществляется программным обеспечением (программными средствами). Файловая служба и служба печати предоставляются операционными системами, а остальные службы обеспечиваются сетевыми прикладными программами или приложениями. К традиционным сетевым службам относятся: Telnet, FTP, HTTP, SMTP, POP-3.

Служба Telnet позволяет организовывать подключения пользователей к серверу по протоколу Telnet.

Служба FTP обеспечивает пересылку файлов с Web-серверов. Эта служба обеспечивается Web-обозревателями (Internet Explorer, Mozilla Firefox, Opera и др.)

HTTP - служба, предназначенная для просмотра Web-страниц (Web-сайтов), обеспечивается сетевыми прикладными программами: Internet Explorer, Mozilla Firefox, Opera и др.

SMTP, POP-3 - службы входящей и исходящей электронной почты. Реализуются почтовыми прикладными программами: Outlook Express, The Bat и др.

Так же на сервере необходима антивирусная программа. ESET NOD32 Smart Security Business Edition является новым интегрированным решением, предоставляющим комплексную защиту серверов и рабочих станций для всех типов организаций.

Данное решение включает функции антиспама и персонального файервола, которые могут использоваться непосредственно на рабочей станции.

ESET NOD32 Smart Security Business Edition обеспечивает поддержку файловых серверов Windows, Novell Netware и Linux/FreeBSD и их защиту от известных и неизвестных вирусов, червей, троянских и шпионских программ, а также других интернет-угроз. В решении существует возможность сканирования по доступу, по запросу и автоматическое обновление.

Решение ESET NOD32 Smart Security Business Edition включает компоненту ESET Remote Administrator, обеспечивающее обновление и централизованное администрирование в корпоративных сетевых средах или глобальных сетях. Решение обеспечивает оптимальную производительность систем и сетей при одновременном снижении потребляемой пропускной способности. Решение обладает функциональными возможностями и гибкостью, в которых нуждается любая компания:

1) Установка на сервер. Версия для корпоративных клиентов ESET NOD32 Smart Security может быть установлена как на сервер, так и на рабочие станции. Это особенно важно для компаний, стремящихся к поддержке своей конкурентоспособности, так как серверы уязвимы для атак не менее, чем обычные рабочие станции. Если серверы не будут защищены, один вирус может повредить всю систему.

2) Удаленное администрирование. С помощью программы ESET Remote Administrator можно контролировать и администрировать программное решение по безопасности из любой точки мира. Особую важность этот фактор имеет для компаний, распределенных географически, а также для системных администраторов, предпочитающий удаленную форму работы или находящихся в разъездах.

Возможность «Зеркала». Функция зеркала ESET NOD32 позволяет ИТ-администратору ограничить полосу пропускания сети путем создания внутреннего сервера обновлений. В результате у рядовых пользователей нет необходимости выходить в Интернет для получения обновлений, что не только позволяет экономить ресурсы, но также сокращает общую уязвимость информационной структуры.

1.6 Краткий план сети

Таблица 1.1 – Краткая сводка оборудования

2 Физическое построение локальной сети и организация выхода в интернет

2.1 Сетевое оборудование

2.1.1 Активное оборудование

В данном курсовом проекте будет использовано следующее оборудование:

Коммутатор D-link DGS-3200-16;

Коммутатор D-link DGS-3100-24;

Маршрутизатор D-link DFL-1600;

Конвертер 1000 Mbit/s D-Link DMC-810SC;

Сервер IBM System x3400 M2 7837PBQ.

Рисунок 2.1 – Коммутатор D-link DGS-3200-16

Общие характеристики

Тип устройства коммутатор (switch)

есть

Количество слотов для дополнительных

интерфейсов 2

Управление

Консольный порт есть

Web-интерфейс есть

Поддержка Telnet есть

Поддержка SNMP есть

Дополнительно

Поддержка IPv6 есть

Поддержка стандартов Auto MDI/MDIX, Jumbo Frame, IEEE 802.1p (Priority tags), IEEE 802.1q (VLAN), IEEE 802.1d (Spanning Tree), IEEE 802.1s (Multiple Spanning Tree)

Размеры (ШxВxГ) 280 x 43 x 180 мм

Количество портов 16 x Ethernet 10/100/1000

коммутатора Мбит/сек

32 Гбит/сек

Размер таблицы MAC адресов 8192

Маршрутизатор

IGMP v1

Рисунок 2.2 – Коммутатор D-link DGS-3100-24

Общие характеристики

Тип устройства коммутатор (switch)

Возможность установки в стойку есть

Количество слотов для дополнительных интерфейсов 4

Управление

Консольный порт есть

Web-интерфейс есть

Поддержка Telnet есть

Поддержка SNMP есть

Дополнительно

Поддержка стандартов Auto MDI/MDIX, Jumbo Frame, IEEE 802.1p (Priority tags), IEEE 802.1q (VLAN), IEEE 802.1d (Spanning Tree), IEEE 802.1s (Multiple Spanning Tree)

Размеры (ШxВxГ) 440 x 44 x 210 мм

Вес 3.04 кг

Дополнительная информация 4 комбо-порта 1000BASE-T/SFP

Количество портов 24 x Ethernet 10/100/1000

коммутатора Мбит/сек

Поддержка работы в стеке есть

Внутренняя пропускная способность 68 Гбит/сек

Размер таблицы MAC адресов 8192

Маршрутизатор

Протоколы динамической маршрутизации IGMP v1

Рисунок 2.3 – Маршрутизатор D-link DFL-1600

Общие характеристики

Тип устройства маршрутизатор (router)

Управление

Консольный порт есть

Web-интерфейс есть

Поддержка Telnet есть

Поддержка SNMP есть

Дополнительно

Поддержка стандартов IEEE 802.1q (VLAN)

Размеры (ШxВxГ) 440 x 44 x 254 мм

Дополнительная информация 6 настраиваемых пользователем портов Gigabit Ethernet

Количество портов 5 x Ethernet 10/100/1000

коммутатора Мбит/сек

Маршрутизатор

Межсетевой экран (Firewall) есть

NAT есть

DHCP-сервер есть

Протоколы динамической

маршрутизации IGMP v1, IGMP v2, IGMP v3, OSPF

Поддержка VPN-туннелей есть (1200 туннелей)

Рисунок 2.4 - Конвертер 1000 Mbit/s D-Link DMC-805G

Общие характеристики

· Один канал преобразования среды передачи между 1000BASE-T и 1000BASE-SX/LX (SFP mini GBIC трансивер);

· Совместимость со стандартами IEEE 802.3ab 1000BASE-T, IEEE802.3z 1000BASE-SX/LX Gigabit Ethernet;

· Индикаторы состояния на передней панели;

· Поддержка LLCF (Link Loss Carry Forward, Link Pass Through);

· Поддержка режима дуплекса и автосогласования для оптического порта;

· DIP переключатель для настройки Fiber (auto/manual), LLR (Enable/Disable);

· Поддержка LLR (Link Loss Return) для порта FX;

· Использование как отдельного устройства или установка в шасси DMC-1000;

· Мониторинг состояния дуплекс/канал для обоих типов сред через управляющий модуль DMC-1002 при установке в шасси DMC-1000;

· Принудительная установка режима дуплекса, LLR on/off для FX, порты on/off через управляющий модуль DMC-1002 шасси DMC-1000;

· Передача данных на скорости канала;

· Горячая замена при установке в шасси;

Размеры 120 x 88 x 25 мм

Вес 305 г.

Рабочая температура От 0° до 40° C

Температура хранения От -25° до 75° C

Влажность От 10% до 95 без образования конденсата

Рисунок 2.5 - Сервер IBM System x3400 M2 7837PBQ

Характеристики сервера

Процессор Intel Xeon Quad-Core

Серия E5520

Частота процессора 2260 MHz

Количество процессоров 1 (+1 опционально)

Частота системной шины 1066 МГц

Кэш второго уровня (L2C) 8 Mb

Чипсет Intel 5500

Объем оперативной памяти 12 Gb

Макисмальная оперативная память 96 Gb

Слоты под оперативную память 12

Тип оперативной памяти DDR3

Чипсет видео Встроенный

Размер видеопамяти 146 Mb

Количество жестких дисков 3

Размер жесткого диска 0 Gb

Максимальное количество дисков 8

Контроллер жестких дисков M5015

Оптические приводы DVD±RW

Сетевой интерфейс 2x Gigabit Ethernet

Внешние порты ввода-вывода 8хUSB ports (six external, two internal), dual-port

Тип монтажа Tower

Тип блока питания 920 (х2) Вт

Максимальное количество

блоков питания 2

Размеры 100 х 580 х 380 мм

Вес 33 кг

Гарантия 3 года

Дополнительная информация Клавиатура + Мышь

Дополнительные комплектующие (заказываются отдельно) Сервера IBM System x3400 M2 7837PBQ

2.1.2 Пассивное оборудование

Пассивное оборудование составляет физическую инфраструктуру сетей (коммутационные панели, розетки, стойки, монтажные шкафы, кабели, кабель-каналы, лотки и т.п.). От качества исполнения кабельной системы во многом зависит пропускная способность и качество каналов связи, поэтому для тестирования физических носителей данных должно применяться сложное и дорогостоящее оборудования под управлением квалифицированного персонала в этой области.

2.2 Расчет кабельной системы

2.2.1 Расчет длины оптоволоконного кабеля основной магистрали

В курсовом проекте необходимо соединить 4 дома. Т.к. заданные этажи 5й, 12й и 14й, то целесообразнее вести главный оптоволоконный кабель по воздушным коммуникациям.

Для подвески основной магистрали между столбами и зданиями используется специальный самонесущий оптоволоконный кабель, который имеет центральный силовой элемент (ЦСЭ) и стальной трос. Оптимальное расстояние между опорами крепления кабеля от 70 до 150 метров.


Рисунок 2.5 – Расположение домов

Таблица 2.1 – Расчет длины оптоволоконного кабеля основной магистрали

Участок кабеля Длина, м Количество сегментов Длина с запасом, м
1-2 105 1 136,5
2-3 75 1 97,5
3-4 190 1 247
4-5 100 1 130
5-6 75 1 97,5
Всего 708,5

2.2.2 Расчет длины витой пары

Для прокладки кабеля по этажам используются кабельные стояки. В подъездах. В подъездах кабель можно не упаковывать, т.к. в подъездах не так грязно и угрозы резкого перепада температуры и загрязнения минимальны.

Витая пара от коммутатора на крыше до нужного этажа идет по стояку без всякой защиты, от электрического щитка до квартиры, как в кабельных каналах, так и без них, просто прикрепленная к стене скобами.

Сервер и маршрутизатор располагается в доме № 2 на 5-м этаже 3-го подъезда в герметичной комнате с постоянным поддержанием температуры не более 30о С.

Таблица 2.2 – Расчет длины витой пары в домах

Расстояние от коммутатора до отверстия в

Кол-во кабе-ля

на квар-тиру, м

Дли-на с запас-ом, м
2 52 55 58 63 56 51 48 15 4 7 1952 2537,6
5 34 30 38 28 26 - - 15 4 5 924 1201,2
7 42 45 48 53 46 41 38 15 4 7 1672 2173,6
8 34 30 38 28 26 - - 15 5 5 1155 1501,5
5703 7413,9

2.3 Логическая структуризация сети

При работе коммутатора среда передачи данных каждого логического сегмента остается общей только для тех компьютеров, которые подключены к этому сегменту непосредственно. Коммутатор осуществляет связь сред передачи данных различных логических сегментов. Он передает кадры между логическими сегментами только при необходимости, то есть только тогда, когда взаимодействующие компьютеры находятся в разных сегментах.

Деление сети на логические сегменты улучшает производительность сети, если в сети имеются группы компьютеров, преимущественно обменивающиеся информацией между собой. Если же таких групп нет, то введение в сеть коммутаторов может только ухудшить общую производительность сети, так как принятие решения о том, нужно ли передавать пакет из одного сегмента в другой, требует дополнительного времени.

Однако даже в сети средних размеров такие группы, как правило, имеются. Поэтому разделение ее на логические сегменты дает выигрыш в производительности - трафик локализуется в пределах групп, и нагрузка на их разделяемые кабельные системы существенно уменьшается.

Коммутаторы принимают решение о том, на какой порт нужно передать кадр, анализируя адрес назначения, помещенный в кадре, а также на основании информации о принадлежности того или иного компьютера определенному сегменту, подключенному к одному из портов коммутатора, то есть на основании информации о конфигурации сети. Для того, чтобы собрать и обработать информацию о конфигурации подключенных к нему сегментов, коммутатор должен пройти стадию "обучения", то есть самостоятельно проделать некоторую предварительную работу по изучению проходящего через него трафика. Определение принадлежности компьютеров сегментам возможно за счет наличия в кадре не только адреса назначения, но и адреса источника, сгенерировавшего пакет. Используя информацию об адресе источника, коммутатор устанавливает соответствие между номерами портов и адресами компьютеров. В процессе изучения сети мост/коммутатор просто передает появляющиеся на входах его портов кадры на все остальные порты, работая некоторое время повторителем. После того, как мост/коммутатор узнает о принадлежности адресов сегментам, он начинает передавать кадры между портами только в случае межсегментной передачи. Если, уже после завершения обучения, на входе коммутатора вдруг появится кадр с неизвестным адресом назначения, то этот кадр будет повторен на всех портах.

Мосты/коммутаторы, работающие описанным способом, обычно называются прозрачными (transparent), поскольку появление таких мостов/коммутаторов в сети совершенно не заметно для ее конечных узлов. Это позволяет не изменять их программное обеспечение при переходе от простых конфигураций, использующих только концентраторы, к более сложным, сегментированным.

Существует и другой класс мостов/коммутаторов, передающих кадры между сегментами на основе полной информации о межсегментном маршруте. Эту информацию записывает в кадр станция-источник кадра, поэтому говорят, что такие устройства реализуют алгоритм маршрутизации от источника (source routing). При использовании мостов/коммутаторов с маршрутизацией от источника конечные узлы должны быть в курсе деления сети на сегменты и сетевые адаптеры, в этом случае должны в своем программном обеспечении иметь компонент, занимающийся выбором маршрута кадров.

За простоту принципа работы прозрачного моста/коммутатора приходится расплачиваться ограничениями на топологию сети, построенной с использованием устройств данного типа - такие сети не могут иметь замкнутых маршрутов - петель. Мост/коммутатор не может правильно работать в сети с петлями, при этом сеть засоряется зацикливающимися пакетами и ее производительность снижается.

Для автоматического распознавания петель в конфигурации сети разработан алгоритм покрывающего дерева (Spanning Tree Algorithm, STA). Этот алгоритм позволяет мостам/коммутаторам адаптивно строить дерево связей, когда они изучают топологию связей сегментов с помощью специальных тестовых кадров. При обнаружении замкнутых контуров некоторые связи объявляются резервными. Мост/коммутатор может использовать резервную связь только при отказе какой-либо основной. В результате сети, построенные на основе мостов/коммутаторов, поддерживающих алгоритм покрывающего дерева, обладают некоторым запасом надежности, но повысить производительность за счет использования нескольких параллельных связей в таких сетях нельзя.

2.4 IP-адресация в сети

Существует 5 классов IP-адресов – A, B, C, D, E. Принадлежность IP-адреса к тому или иному классу определяется значением первого октета (W). Ниже показано соответствие значений первого октета и классов адресов.

Таблица 2.3 – Диапазон октетов классов IP адресов

IP-адреса первых трех классов предназначены для адресации отдельных узлов и отдельных сетей. Такие адреса состоят из двух частей – номера сети и номера узла. Такая схема аналогична схеме почтовых индексов – первые три цифры кодируют регион, а остальные почтовое отделение внутри региона.

Преимущества двухуровневой схемы очевидны: она позволяет, во-первых, адресовать целиком отдельные сети внутри составной сети, что необходимо для обеспечения маршрутизации, а во-вторых – присваивать узлам номера внутри одной сети независимо от других сетей. Естественно, что компьютеры, входящие в одну и ту же сеть должны иметь IP-адреса с одинаковым номером сети.

IP-адреса разных классов отличаются разрядностью номеров сети и узла, что определяет их возможный диапазон значений. Следующая таблица отображает основные характеристики IP-адресов классов A,B и C.

Таблица 2.4 – Характеристики IP – адресов классов А, В и С

Например, IP-адрес 213.128.193.154 является адресом класса C, и принадлежит узлу с номером 154, расположенному в сети 213.128.193.0.

Схема адресации, определяемая классами A, B, и C, позволяет пересылать данные либо отдельному узлу, либо всем компьютерам отдельной сети (широковещательная рассылка). Однако существует сетевое программное обеспечение, которому требуется рассылать данные определенной группе узлов, необязательно входящих в одну сеть. Для того чтобы программы такого рода могли успешно функционировать, система адресации должна предусматривать так называемые групповые адреса. Для этих целей используются IP-адреса класса D. Диапазон адресов класса E зарезервирован и в настоящее время не используется.

Наряду с традиционной десятичной формой записи IP-адресов, может использоваться и двоичная форма, отражающая непосредственно способ представления адреса в памяти компьютера. Поскольку IP-адрес имеет длину 4 байта, то в двоичной форме он представляется как 32-разрядное двоичное число (т.е. последовательность из 32 нулей и единиц). Например, адрес 213.128.193.154 в двоичной форме имеет вид 11010101 1000000 11000001 10011010.

Протокол IP предполагает наличие адресов, которые трактуются особым образом. К ним относятся следующие:

1) Адреса, значение первого октета которых равно 127. Пакеты, направленные по такому адресу, реально не передаются в сеть, а обрабатываются программным обеспечением узла-отправителя. Таким образом, узел может направить данные самому себе. Этот подход очень удобен для тестирования сетевого программного обеспечения в условиях, когда нет возможности подключиться к сети.

2) Адрес 255.255.255.255. Пакет, в назначении которого стоит адрес 255.255.255.255, должен рассылаться всем узлам сети, в которой находится источник. Такой вид рассылки называется ограниченным широковещанием. В двоичной форме этот адрес имеет вид 11111111 11111111 11111111 11111111.

3) Адрес 0.0.0.0. Он используется в служебных целях и трактуется как адрес того узла, который сгенерировал пакет. Двоичное представление этого адреса 00000000 00000000 00000000 00000000

Дополнительно особым образом интерпретируются адреса:

Схема разделения IP-адреса на номер сети и номер узла, основанная на понятии класса адреса, является достаточно грубой, поскольку предполагает всего 3 варианта (классы A, B и C) распределения разрядов адреса под соответствующие номера. Рассмотрим для примера следующую ситуацию. Допустим, что некоторая компания, подключающаяся к Интернет, располагает всего 10-ю компьютерами. Поскольку минимальными по возможному числу узлов являются сети класса C, то эта компания должна была бы получить от организации, занимающейся распределением IP-адресов, диапазон в 254 адреса (одну сеть класса C). Неудобство такого подхода очевидно: 244 адреса останутся неиспользованными, поскольку не могут быть распределены компьютерам других организаций, расположенных в других физических сетях. В случае же, если рассматриваемая организация имела бы 20 компьютеров, распределенных по двум физическим сетям, то ей должен был бы выделяться диапазон двух сетей класса C (по одному для каждой физической сети). При этом число "мертвых" адресов удвоится.

Для более гибкого определения границ между разрядами номеров сети и узла внутри IP-адреса используются так называемые маски подсети. Маска подсети – это 4-байтовое число специального вида, которое используется совместно с IP-адресом. "Специальный вид" маски подсети заключается в следующем: двоичные разряды маски, соответствующие разрядам IP-адреса, отведенным под номер сети, содержат единицы, а в разрядах, соответствующих разрядам номера узла – нули.

Использование в паре с IP -адресом маски подсети позволяет отказаться от применения классов адресов и сделать более гибкой всю систему IP-адресации.

Так, например, маска 255.255.255.240 (11111111 11111111 11111111 11110000) позволяет разбить диапазон в 254 IP-адреса, относящихся к одной сети класса C, на 14 диапазонов, которые могут выделяться разным сетям.

Для стандартного деления IP-адресов на номер сети и номер узла, определенного классами A, B и C маски подсети имеют вид:

Таблица 2.5 – Маски подсети классов А, В и С

Класс

Двоичная форма

Десятичная форма

11111111 00000000 00000000 00000000 255.0.0.0
11111111 11111111 00000000 00000000 255.255.0.0
11111111 11111111 11111111 00000000 255.255.255.0

Поскольку каждый узел сети Интернет должен обладать уникальным IP-адресом, то, безусловно, важной является задача координации распределения адресов отдельным сетям и узлам. Такую координирующую роль выполняет Интернет Корпорация по распределению адресов и имен (The Internet Corporation for Assigned Names and Numbers, ICANN).

Естественно, что ICANN не решает задач выделения IP-адресов конечным пользователям и организациям, а занимается распределением диапазонов адресов между крупными организациями-поставщиками услуг по доступу к Интернету (Internet Service Provider), которые, в свою очередь, могут взаимодействовать как с более мелкими поставщиками, так и с конечными пользователями. Так, например функции по распределению IP-адресов в Европе ICANN делегировал Координационному Центру RIPE (RIPE NCC, The RIPE Network Coordination Centre, RIPE - Reseaux IP Europeens). В свою очередь, этот центр делегирует часть своих функций региональным организациям. В частности, российских пользователей обслуживает Региональный сетевой информационный центр "RU-CENTER".

В данной сети распределение IP-адресов производится с помощью протокола DHCP.

Протокол DHCP предоставляет три способа распределения IP-адресов:

1) Ручное распределение. При этом способе сетевой администратор сопоставляет аппаратному адресу (обычно MAC-адресу) каждого клиентского компьютера определенный IP-адрес. Фактически, данный способ распределения адресов отличается от ручной настройки каждого компьютера лишь тем, что сведения об адресах хранятся централизованно (на сервере DHCP), и поэтому их проще изменять при необходимости.

2) Автоматическое распределение. При данном способе каждому компьютеру на постоянное использование выделяется произвольный свободный IP-адрес из определенного администратором диапазона.

3) Динамическое распределение. Этот способ аналогичен автоматическому распределению, за исключением того, что адрес выдается компьютеру не на постоянное пользование, а на определенный срок. Это называется арендой адреса. По истечении срока аренды IP-адрес вновь считается свободным, и клиент обязан запросить новый (он, впрочем, может оказаться тем же самым).

IP-адреса в курсовом проекте взяты класса B и имеют маску 225.225.0.0. Выдаются протоколом DHCP с привязкой к МАС-адресу во избежание нелегальных подключений.

Таблица 2.6 – Назначение подсетей

Номер дома Число подъездов Номер этажа Адрес подсети
2 4 5
5 4 4
7 4 10
8 5 11

2.5 Организация выхода в Интернет через спутник

2.5.1 Виды спутникового Интернета

Двухсторонний спутниковый Интернет подразумевает приём данных со спутника и отправку их обратно также через спутник. Этот способ является очень качественным, так как позволяет достигать больших скоростей при передаче и отправке, но он является достаточно дорогим и требует получения разрешения на радиопередающее оборудование (впрочем, последнее провайдер часто берет на себя).

Односторонний спутниковый Интернет подразумевает наличие у пользователя какого-то существующего способа подключения к Интернету. Как правило, это медленный и/или дорогой канал (GPRS/EDGE, ADSL-подключение там, где услуги доступа в Интернет развиты плохо и ограничены по скорости и т. п.). Через этот канал передаются только запросы в Интернет. Эти запросы поступают на узел оператора одностороннего спутникового доступа (используются различные технологии VPN-подключения или проксирования трафика), а данные, полученные в ответ на эти запросы, передают пользователю через широкополосный спутниковый канал. Поскольку большинство пользователей в основном получает данные из Интернета, то такая технология позволяет получить более скоростной и более дешевый трафик, чем медленные и дорогие наземные подключения. Объем же исходящего трафика по наземному каналу (а значит и затраты на него) становится достаточно скромным (соотношение исходящий/входящий примерно от 1/10 при веб-серфинге, от 1/100 и лучше при загрузке файлов).

Естественно, использовать односторонний спутниковый Интернет имеет смысл тогда, когда доступные наземные каналы слишком дорогие и/или медленные. При наличии недорого и быстрого «наземного» Интернета спутниковый Интернет имеет смысл как резервный вариант подключения, на случай пропадания или плохой работы «наземного».

2.5.2 Оборудование

Ядро спутникового Интернета. Осуществляет обработку данных, полученных со спутника, и выделение полезной информации. Существует множество различных видов карт, но наиболее известны карты семейства SkyStar. Основными отличиями DVB-карт на сегодняшний день является максимальная скорость потока данных. Также к характеристикам можно отнести возможность аппаратного декодирования сигнала, программную поддержку продукта.

Существуют два типа спутниковых антенн:

· офсетные;

· прямофокусные.

Прямофокусные антенны представляют собой «блюдце» с сечением в виде окружности; приемник расположен прямо напротив его центра. Они сложнее офсетных в настройке и требуют подъёма на угол спутника, из-за чего могут «собирать» атмосферные осадки. Офсетные антенны за счёт смещения фокуса «тарелки» (точки максимального сигнала), устанавливаются практически вертикально, и потому проще в обслуживании. Диаметр антенны выбирается в соответствии с метеоусловиями и уровнем сигнала необходимого спутника.

Конвертер выполняет роль первичного преобразователя, который преобразовывает СВЧ-сигнал со спутника в сигнал промежуточной частоты. В настоящее время большинство конвертеров адаптировано к длительным воздействиям влаги и УФ-лучей. При выборе конвертера, в основном, следует обратить внимание на шумовой коэффициент. Для нормальной работы стоит выбирать конвертеры со значением этого параметра в промежутке 0,25 - 0,30 dB.

Для реализации двухстороннего способа к искомому оборудованию добавляется передающая карта и передающий конвертер.

2.5.3 Программное обеспечение

Существует два взаимодополняющих подхода к реализации ПО для спутникового интернета.

В первом случае DVB-карта используется как стандартное сетевое устройство (но работающие только на приём), а для передачи используется VPN-туннель (многие провайдеры используют PPTP («Windows VPN»), либо OpenVPN на выбор клиента, в некоторых случаях используется IPIP-туннель), есть и другие варианты. При этом в системе отключается контроль заголовков пакетов. Запросный пакет уходит на туннельный интерфейс, а ответ приходит со спутника (если не отключить контроль заголовков, система посчитает пакет ошибочным (в случае Windows - не так)). Данный подход позволяет использовать любые приложения, но имеет большую задержку. Большинство доступных в СНГ спутниковых провайдеров (SpaceGate (Ителсат), PlanetSky, Raduga-Internet, SpectrumSat) поддерживают данный метод.

Второй вариант (иногда используется совместно с первым): использование специального клиентского ПО, которое за счёт знания структуры протокола позволяет ускорять получение данных (например, запрашивается веб-страница, сервер у провайдера просматривает её и сразу, не дожидаясь запроса, посылает и картинки с этой страницы, считая, что клиент их все равно запросит; клиентская часть кеширует такие ответы и возвращает их сразу). Такое программное обеспечение со стороны клиента обычно работает как HTTP и Socks-прокси. Примеры: Globax (SpaceGate + другие по запросу), TelliNet (PlanetSky), Sprint (Raduga), Slonax (SatGate).

В обоих случаях возможно «расшаривание» трафика по сети (в первом случае иногда даже можно иметь несколько разных подписок спутникового провайдера и разделять тарелку за счёт особой настройки машины с тарелкой (требуется Linux или FreeBSD, под Windows требуется программное обеспечение сторонних производителей)).

Некоторые провайдеры (SkyDSL) в обязательном порядке используют своё программное обеспечение (выполняющее роль и туннеля, и прокси), часто также выполняющие клиентский шейпинг и не дающее расшаривать спутниковый интернет между пользователями (также не дающие возможности использовать в качестве ОС что либо отличное от Windows).

2.5.4 Преимущества и недостатки

Можно выделить следующие плюсы спутникового Интернета:

· стоимость трафика в часы наименьшей загрузки емкости

· независимость от наземных линий связи (при использовании GPRS или WiFi в качестве запросного канала)

· большая конечная скорость (приём)

· возможность просмотра спутникового ТВ и «рыбалки со спутника»

· возможность свободного выбора провайдера

Недостатки:

· необходимость покупки специального оборудования

· сложность установки и настройки

· в общем случае более низкая надежность по сравнению с наземным подключением (большее количество компонентов, необходимых для бесперебойной работы)

· наличие ограничений (прямая видимость спутника) по установке антенны

· высокий ping (задержка между отсылкой запроса и приходом ответа). В некоторых ситуациях это критично. Например при работе в интерактивном режиме Secure Shell и X11 а также во многих многопользовательских онлайновых системах (та же SecondLife не может вообще работать через спутник, шутер Counter Strike,Call of Duty - работает с проблемами и т. п.)

· при наличии хотя бы псевдоанлимитных тарифных планов (вроде «2000 рублей за 40 Gb на 512 кбит/с дальше - анлим но 32 кбит/c» - ТП Актив-Мега, ЭрТелеком, Омск) наземный интернет уже становится дешевле. При дальнейшем развитии кабельной инфраструктуры стоимость наземного трафика будет стремиться к нулю, при этом стоимость спутникового трафика жестко ограничена себестоимостью запуска спутника и её снижения не планируется.

· при работе через некоторых операторов у вас будет не российский IP-адрес (SpaceGate украинский, PlanetSky - кипрский, SkyDSL - Германский) в результате чего сервисы, которые используют для каких-то целей (например, пускаем только из РФ) определение страны пользователя, будут работать некорректно.

· программная часть - не всегда "Plug and Play", в некоторых (редких) ситуациях могут быть сложности и тут все зависит от качества техподдержки оператора.

В курсовом проекте будет использоваться двусторонний спутниковый интернет. Это позволит достигать высоких скоростей передачи данных и качественную передачу пакетов, но повысит расходы на реализацию проекта.


3. Безопасность при работе на высоте

Работами на высоте считаются все работы, которые выполняются на высоте от 1,5 до 5 м от поверхности грунта, перекрытия или рабочего настила, над которым производятся работы с монтажных приспособлений или непосредственно с элементов конструкций, оборудования, машин и механизмов, при их эксплуатации, монтаже и ремонте.

К работам на высоте допускаются лица, достигшие 18 лет, имеющие медицинское заключение о допуске к работам на высоте, прошедшие обучение и инструктаж по технике безопасности и получившие допуск к самостоятельной работе.

Работы на высоте должны выполняться со средств подмащивания (лесов, подмостей, настилов, площадок, телескопических вышек, подвесных люлек с лебедками, лестниц и других аналогичных вспомогательных устройств и приспособлений), обеспечивающих безопасные условия работы.

Все средства подмащивания, применяемые для организации рабочих мест на высоте, должны находиться на учете, иметь инвентарные номера и таблички с указанием даты проведенных и очередных испытаний.

Устройство настилов и работа на случайных подставках (ящиках, бочках и т.п.) запрещается.

Контроль за состоянием средств подмащивания должен осуществляться лицами из числа ИТР, которые назначаются распоряжением по предприятию (нефтебазе).

Работники всех специальностей для выполнения даже кратковременных работ на высоте с лестниц должны обеспечиваться предохранительными поясами и, при необходимости, защитными касками.

Предохранительные пояса, выдаваемые рабочим, должны иметь бирки с отметкой об испытании.

Пользоваться неисправным предохранительным поясом или с просроченным сроком испытания запрещается.

Работа на высоте производится в дневное время.

В аварийных случаях (при устранении неполадок), на основании приказа администрации, работы на высоте в ночное время производить разрешается с соблюдением всех правил безопасности под контролем ИТР. В ночное время место работы должно быть хорошо освещено.

В зимнее время, при выполнении работ на открытом воздухе, средства подмащивания должны систематически очищаться от снега и льда и посыпаться песком.

При силе ветра 6 баллов (10-12 м/сек) и более, при грозе, сильном снегопаде, гололедице работы на высоте на открытом воздухе не разрешаются.

Нельзя самовольно перестраивать настилы, подмости и ограждения.

Электропровода, расположенные ближе 5 м от лестниц (подмостей), требуется оградить или обесточить на время выполнения работ.

Рабочие обязаны выполнять порученную работу, соблюдая требования охраны труда, изложенные в настоящей инструкции.

За нарушение требований инструкции, относящихся к выполняемой ими работе, рабочие несут ответственность в порядке, установленном Правилами внутреннего распорядка.

Одновременное производство работ в 2-х и более ярусов по вертикали запрещается.

Запрещается складывать инструмент у края площадки, бросать его и материалы на пол или на землю. Инструмент должен храниться в специальной сумке или ящике.

Запрещается подбрасывание каких-либо предметов для подачи работающему наверху. Подача должна производиться при помощи верёвок, к середине которых привязываются необходимые предметы. Второй конец верёвки должен находиться в руках у стоящего внизу работника, который удерживает поднимаемые предметы от раскачивания.

Работающий на высоте должен вести наблюдение за тем, чтобы внизу под его рабочим местом, не находились люди.

При использовании приставных лестниц и стремянок запрещается:

· работать на неукреплённых конструкциях и ходить по ним, а также перелезать через ограждения;

· работать на двух верхних ступенях лестницы;

· находиться двум рабочим на лестнице или на одной стороне лестницы-стремянки;

· перемещаться по лестнице с грузом или с инструментом в руках;

· применять лестницы со ступеньками нашитыми гвоздями;

· работать на неисправной лестнице или на ступеньках облитых скользкими нефтепродуктами;

· наращивать лестницы по длине, независимо от материала, из которого они изготовлены;

· стоять или работать под лестницей;

· устанавливать лестницы около вращающихся валов, шкивов и т.п.;

· производить работы пневматическим инструментом;

· производить электросварочные работы.


4. Экономические затраты на построение локальной сети

Данный курсовой проект подразумевает следующие экономические затраты.

Таблица 4.1 – Перечень экономических затрат*

Наименование Единицы измерения Кол-во

за ед. (руб.)

Сумма (руб)
Оптоволоконный кабель ЭКБ-ДПО 12 м 708,5 36 25506
Кабель FTP 4 пары кат.5e <бухта 305м> Exalan+ - бухта 25 5890 147250
Коммутатор D-Link DGS-3200-16 шт 2 13676 27352
Коммутатор D-Link DGS-3100-24 шт 5 18842 94210
Маршрутизатор D-link DFL-1600 шт 1 71511 71511
Сервер IBM System x3400 M2 7837PBQ шт 1 101972 101972
ИБП APC SUA2200I Smart-UPS 2200 230V шт 2 29025 58050
Коннекторы RJ-45 Пачка(100шт) 3 170 510
Коннекторы MT-RJ шт 16 280 4480
Шкаф серверный шт 1 2100 2100
Шкаф для маршрутизатора шт 1 1200 1200
Шкаф для коммутатора шт 7 1200 8400
Конвертер D-Link DMC-805G шт 16 2070 33120
Спутниковая антенна + DVB-карта + конвертер шт 1 19300 19300
Скобы 6мм Пачка (50 шт) 56 4 224
Всего 595185

Экономические затраты не включают стоимость монтажных работ. Кабели и коннекторы рассчитаны с запасом ~30%. Цены указанны на момент создания курсового проекта с учетом НДС.

Заключение

В процессе разработки курсового проекта была создана ЛВС жилого района, имеющая выход на глобальную сеть. Был сделан обоснованный выбор типа сети на основе рассмотрения множества вариантов. Предусмотрено расширение сети для ее дальнейшего роста.

При курсовом проектировании использовались IP – адреса класса В, так как в сети имеется сто одна рабочая станция. Присвоение адресов осуществлялось протоколом DHCP. В качестве адреса подсети выступал номер подъезда.

В пункте расчета необходимого количества оборудования приведены данные и расчеты используемого оборудования. Стоимость разработки составляет 611481 рублей. Все рассчитанные параметры удовлетворяют критериям работоспособности сети.

Составлен краткий план сети, где указаны все характеристики используемого оборудования. В разделе «Безопасность при работе с электроинструментом» рассмотрены правила обращения с электроинструментом и техника безопасности при работе с ним.

В целом курсовой проект содержит все необходимые данные для построения локальной вычислительной сети.

Список использованных источников

1. http://www.dlink.ru;

2. http://market.yandex.ru;

3. http://www.ru.wikipedia.org.

4. Компьютерные сети. Учебный курс [Текст] / Microsoft Corporation. Пер. с анг. – М.: «Русская редакция» ТОО «Channel Trading Ltd.», 1998. – 696с.

5. Максимов, Н.В. Компьютерные сети: Учебное пособие [Текст] / Н.В. Максимов, И.И. Попов – М.: ФОРУМ: ИНФРА-М, 2005. – 336с.



их нормативных документов.

Порядок проектирования локальных сетей

Типовое проектирование ЛВС может выполняться в несколько этапов и предусматривает определение следующих характеристик:

· основных и второстепенных задач, возлагаемых на сеть;

· функциональных возможностей сети;

· пропускной способности различных участков и характера передаваемой информации;

· вида монтируемой сети;

· возможности прокладки кабелей внутри помещений и обеспечения их безопасной эксплуатации;

· структуры ЛВС, ее иерархии и основных частей по отделам, рабочим местам;

· возможности дальнейшего расширения сети;

· необходимости подключения к уже существующим локальным сетям предприятия и к глобальной сети Интернет;

· возможности использования средств защиты информации.

Все работы, которые предусматривает проектирование компьютерных сетей, выполняются в строгом соответствии с предварительным планом, разработанным на основе ТЗ. Одним из приоритетных условий является простота обслуживания, монтажа, а при необходимости и демонтажа локальной сети предприятия.

Исходные данные

Важность этого этапа связана как с необходимостью упорядочивания требований к создаваемой ЛС и ее отдельным составляющим для обеспечения возможности принятия в будущем взвешенных конкретных решений, так и с ее обоснованием.

При создании новой сети для какого-нибудь предприятия желательно учитывать следующие факторы:

· Требуемый размер сети (в настоящее время, в ближайшем будущем и по прогнозу на перспективу).

· Структура , иерархия и основные части сети (по подразделениям предприятия, а также по комнатам, этажам и зданиям предприятия).

· Основные направления и интенсивность информационных потоков в сети (в настоящее время, в ближайшем будущем и в дальней перспективе). Характер передаваемой по сети информации (данные, оцифрованная речь, изображения), который непосредственно сказывается на требуемой скорости передачи (до нескольких сотен Мбит/с для телевизионных изображений высокой четкости).

· Технические характеристики оборудования (компьютеров, адаптеров, кабелей, репитеров , концентраторов, коммутаторов) и его стоимость.

· Возможности прокладки кабельной системы в помещениях и между ними, а также меры обеспечения целостности кабеля.

· Обслуживание сети и контроль ее безотказности и безопасности.

· Требования к программным средствам по допустимому размеру сети, скорости, гибкости, разграничению прав доступа, стоимости, по возможностям контроля обмена информацией и т.д.

· Необходимость подключения к глобальным или к другим локальным сетям.

Вполне возможно, что после изучения всех факторов выяснится, что можно обойтись без сети, избежав тем самым довольно больших затрат на аппаратуру и программное обеспечение , установку, эксплуатацию, поддержку и ремонт сети, зарплату обслуживающему персоналу, и т.д.

Сеть по сравнению с автономными компьютерами порождает множество дополнительных проблем: от простейших механических (компьютеры, подключенные к сети, труднее перемещать с места на место ) до сложных информационных (необходимость контролировать совместно используемые ресурсы, предотвращать заражение сети вирусами). К тому же пользователи сети уже не так независимы, как пользователи автономных компьютеров, им надо придерживаться определенных правил, подчиняться установленным требованиям, которым их необходимо научить.

Наконец, сеть остро ставит вопрос о безопасности информации, защиты от несанкционированного доступа, ведь с любого компьютера сети можно считать данные с общих сетевых дисков. Защитить один компьютер или даже несколько одиночных гораздо проще, чем целую сеть . Поэтому приступать к установке сети целесообразно только тогда, когда без сети работа становится невозможной, непроизводительной, когда отсутствие межкомпьютерной связи сдерживает развитие дела.

Требования и варианты решений при выборе размера и структуры сети , сетевого оборудования и программного обеспечения будут рассмотрены в последующих разделах. В начале проектирования сети необходимо провести полную "инвентаризацию " имеющихся компьютеров и их программного обеспечения, а также периферийных устройств (принтеров, сканеров и т.д.). Это позволит при организации сети исключить ненужное дублирование (оборудование и программное обеспечение теперь могут быть разделяемыми ресурсами), а также поставить задачи модернизации (апгрейда) как аппаратных, так и программных средств. Для корректного определения характеристик компьютеров целесообразно использовать специальные диагностические программы или встроенные программы ОС (например, в ОС Windows Millennium это программа "Сведения о системе" из раздела служебных программ и программа "Система" из панели управления). Следует выбирать такие варианты программ, которые обеспечивают получение правильных данных ("старые" диагностические программы могут неверно указать тип процессора и версию ОС), а также сохранение данных в файле (это особенно ценно при большом числе компьютеров). Кроме того, следует уделить внимание наличию встроенной сетевой карты или сетевого контроллера на системной плате, а также типу поддерживаемых ими сетевых стандартов (как правило, поддерживается сеть Ethernet на витой паре, но принципиально знать ее разновидность – 10/100/1000 Мбит/c). Не все характеристики компьютеров, которые важны при их объединении в сеть , могут быть определены описанными выше способами. Из сопроводительной документации к компьютеру или после вскрытия системного блока можно и нужно определить число и тип свободных слотов (разъемов) расширения, а также максимальную мощность блока питания. Это необходимо для оценки возможности установки в компьютер новых плат.

Выбор оборудования

При выборе сетевого оборудования надо учитывать множество факторов, в частности:

· уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

· скорость передачи информации и возможность ее дальнейшего увеличения;

· возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

· метод управления обменом в сети (CSMA /CD, полный дуплекс или маркерный метод );

· разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

· стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов , репитеров , концентраторов, коммутаторов).

Всем этим часто пренебрегают, а напрасно: заменить программное обеспечение сравнительно просто, а вот замена аппаратуры, особенно прокладка кабеля, обходится порой очень дорого, а иногда бывает просто невозможна. В первую очередь следует проанализировать применимость для рассматриваемого случая сети Ethernet , как наиболее популярной, недорогой и допускающей развитие (Fast Ethernet иGigabit Ethernet ).

Проблема выбора типа кабеля достаточно подробно рассматривалась ранее. В предположении, что возможность выбора в данном случае существует, стоит повторить основные аргументы в пользу того или иного выбора (см. табл. 15.1).

Таблица 15.1. Аргументы при выборе типа кабеля
Тип кабеля Аргументы при выборе
за против
неэкранированная витая пара UTP (категория 3 или выше) · доступность по цене; · доступность инструментов для установки разъемов (RJ45); · удобство прокладки кабеля (гибкий); · относительная простота ремонта при повреждении; · поддержка перспективных высокоскоростных сетей (Fast и Gigabit Ethernet) при использовании кабеля категории 5 или выше. · относительно низкая устойчивость к электромагнитным помехам; · сравнительно малые допустимые расстояния кабельных соединений, особенно для высокоскоростных сетей; · невозможность использования во внешних участках соединений (между зданиями).
экранированная витая пара STP (оплеточный экран) 1 · повышенная устойчивость к электромагнитным помехам. · несколько более высокая цена по сравнению с кабелем типа UTP .
экранированная витая пара FTP (экран из фольги) 2 подобно предыдущему типу кабеля
многомодовыйоптоволоконный кабель · практическая нечувствительность к внешним электромагнитным помехам и отсутствие собственного излучения; · поддержка перспективных высокоскоростных сетей, в том числе на расстояниях, недоступных при использовании витой пары. · относительно высокая цена кабеля и сетевого оборудования; · сложность установки (требуется специальный инструмент и высокая квалификация персонала); · низкая ремонтопригодность; · чувствительность к воздействиям факторов окружающей среды (могут вызвать помутнениеоптоволокна ).
одномодовыйоптоволоконный кабель · улучшенные технические характеристики по сравнению с многомодовым кабелем (возможность увеличения скорости передачи или длины соединений). · более высокая цена; · сложная установка и ремонт.
беспроводные соединения (радио и инфракрасные каналы) · устранение необходимости организации кабельной системы; · мобильность рабочих станций (простота их перемещения внутри зданий или вблизи от центрального компьютера с излучающей антенной); · возможность организации глобальных сетей (с использованием радиоканалов и спутниковой связи). · относительно дорогое оборудование; · сильная зависимость надежности соединения от наличия препятствий (для радиоволн) и пыли в помещении (для инфракрасных каналов); · довольно низкая скорость передачи (максимум до нескольких Мбит/с) и невозможность ее существенного увеличения.

В настоящее время для организации локальных сетей в подавляющем большинстве случаев используется неэкранированная витая пара UTP . Более дорогие варианты на основе экранированной витой пары, оптоволоконного кабеля или беспроводных соединений применяются на предприятиях, где в этом существует действительно острая необходимость. Например, оптоволокно может использоваться для связи между удаленными сегментами сети без потери скорости. Рекомендации по организации кабельной системы, в том числе, содержащиеся в стандартах на структурированные кабельные системы (СКС ), рассмотрены в отдельном разделе "Проектирование кабельной системы" Лекции 16.

Еще одна важная задача – это выбор компьютеров. Если для рабочих станций или невыделенных серверов обычно используют те компьютеры, которые уже имеются на предприятии, то выделенный сервер желательно приобретать специально для сети. Лучше, если это будет быстродействующий специализированный компьютер -сервер , спроектированный с учетом специфических нужд сети (такие серверы выпускаются всеми крупнейшими производителями компьютеров).

Требования к серверу:

· Максимально быстрый процессор (компания Microsoft рекомендует для своей операционной системы Windows Server 2003 процессор с тактовой частотой не менее 500 МГц). Типичная величина тактовой частоты процессора для сервера сейчас составляет 2-3 ГГц. Для больших сетей применяют и многопроцессорные серверы (иногда до 32 процессоров).

· Большой объем оперативной памяти (фирма Microsoft рекомендует для своей операционной системы Windows Server 2003 объем памяти не менее 256 мегабайт, такие же требования фирмы Novell для NetWare 6). Типичный объем оперативной памяти сервера сейчас составляет 512 Мбайт-20 Гбайт. Большой объем памяти сервера даже важнее быстродействия процессора, так как позволяет эффективно использовать кэширование дисковой информации, храня в памяти копии тех областей диска, с которыми производится наиболее интенсивный обмен.

· Быстрые жесткие диски большого объема. Типичная величина объема диска сервера сейчас составляет 150-500 Гбайт. Дисководы должны быть совместимы с сетевой операционной системой (то есть их драйверы обязательно должны входить в набор драйверов, поставляемый с ОС). Широко применяют SCSI-дисководы, которые быстрее традиционных IDE-дисководов. В серверах часто предусматривают возможность "горячей" замены дисков (без выключения питания сервера), что очень удобно.

· Специализированные серверы уже содержат в своем составе сетевые адаптеры с оптимальными характеристиками. Если в качестве сервера используется обычный персональный компьютер, то сетевой адаптер для него надо выбирать наиболее быстродействующий.

· Видеомониторы, клавиатуры и мыши не являются обязательными принадлежностями сервера, так как сервер, как правило, никогда не работает в режиме обычного компьютера.

Если есть возможность выбора компьютеров для рабочих станций, то стоит проанализировать целесообразность применения бездисковых рабочих станций (с загрузкой операционной системы через сеть ). Это сразу снизит стоимость сети в целом или позволит при тех же затратах купить более качественные компьютеры: с быстрыми процессорами, с хорошими мониторами, с большой оперативной памятью. Правда, в настоящее время использование бездисковых компьютеров считается не самым лучшим решением. Ведь в этом случае всю информацию компьютер получает через сеть и передает в сеть , что может вызвать чрезмерную загрузку сети. Бездисковые рабочие станции допустимы только при малых сетях (не более 10-20 компьютеров). В идеале значительная часть всех информационных потоков (не менее 80%) должна оставаться внутри компьютера, а к сетевым ресурсам обращения должны быть только в случае действительной необходимости. Таким образом, упоминавшееся "правило 80/20" работает и в этом случае.

При отказе от использования гибких дисков на каждом компьютере сети можно существенно повысить ее устойчивость к вирусам и несанкционированному доступу к данным. Дисковод гибкого диска вполне может быть только на одной рабочей станции сегмента или даже всей сети. Причем эта рабочая станция должна контролироваться администратором сети . Она может быть расположена в отдельной комнате вместе с концентраторами, коммутаторами, маршрутизаторами.

Для любой сети крайне критична ситуация перебоев в системе электропитания. Несмотря на то, что многие сетевые программные средства применяют специальные меры против этого, как и против других отказов аппаратуры (например, дублирование дисков), проблема очень серьезная. Иногда отключение питания может полностью и надолго вывести сеть из строя.

В идеале защищенными от отключения питания должны быть все серверы сети (желательно и рабочие станции). Проще всего этого добиться, если сервер в сети всего один. Источник бесперебойного питания при сбое питания переходит на питание подключенного компьютера от аккумулятора и подает специальный сигнал компьютеру, который за короткое время завершает все текущие операции и сохраняет данные на диске. При выборе источника бесперебойного питания надо, прежде всего, обращать внимание на максимальнуюмощность , которую он обеспечивает, и на время поддержания им номинального уровня напряжения (это время составляет от нескольких минут до нескольких часов). Стоимость устройства довольно высока (до нескольких тысяч долларов). Поэтому целесообразно один источник бесперебойного питания применять для двух-трех серверов.

Наиболее устойчивы к отказам питания портативные компьютеры (ноутбуки). Встроенный аккумулятор и низкое потребление энергии обеспечивают их нормальную работу без внешнего питания в течение одного-двух часов и даже более. Если еще учесть низкий уровень излучений и высокое качество изображения мониторов этих компьютеров, то стоит всерьез рассмотреть возможность использования ноутбуков в качестве рабочих станций, а вероятно, и не слишком мощного, невыделенного сервера. Тем более что многие ноутбуки имеют встроенные сетевые адаптеры довольно неплохого качества. Особенно удобно применение ноутбуков в одноранговых сетях с множеством серверов. Применение внешних источников бесперебойного питания в подобных случаях становится чересчур дорогим удовольствием.

Кроме перечисленных проблем проектировщику сети приходится решать задачи, связанные с выбором сетевых адаптеров, репитеров , концентраторов, коммутаторов и маршрутизаторов, но об этом уже достаточно сказано в предыдущих главах. Стоит только отметить, чтопроизводительность сети и ее надежность определяются самым низкокачественным ее компонентом. При покупке дорогих концентраторов или коммутаторов, не стоит экономить, например, на сетевых адаптерах. Верно и обратное. Желательно, чтобы все компоненты оборудования максимально полно соответствовали друг другу.

Определение сетевой модели

Сетевая модель определяет способ хранения данных и расположение линий связи, по которым эти данные передаются. В каждой сети может быть реализована одна или сразу несколько стандартных моделей. В настоящее время наиболее распространены четыре модели, предоставляющие пользователям доступ к сетевым приложениям и данным:

1. Распределенная среда (среда "мэйнфрейма")

Эта модель была самой первой и остается популярной по сей день. Все ресурсы сети такой модели располагаются на сервере, который отвечает за управление и хранение всех данных компании. Каж­дый пользователь сети для запуска процессов на сервере обращается к нему со своего видеотерми­нала или бездисковой рабочей станции.

Основные достоинства и недостатки данной среды:

Сервер является наиболее уязвимым компонентом к отказам сети

Отсутствие необходимости модернизации рабочих станций клиентов для поддержки новых при­ложений

Снижение производительности сети при перегрузке сервера

Невозможность дальнейшей модернизации и расширения в случае неправильного выбора сервера

Несложное управление вопросами безопасности физического доступа к серверу.

2. Среда клиент/сервер

На современной стадии развития технологий совместного использования данных и ресурсов эта модель является наиболее популярной и может быть реализована в организациях самого разного масштаба. Здесь сервер используется только для предоставления доступа к приложениям и хранения сгенерированных данных. Вся обработка данных выполняется на рабочей станции, что улучшает производительность работы сети и снижает загруженность сервера.

Основные достоинства и недостатки среды клиент/сервер:

Необходимость более тщательного по сравнению с другими моделями планирования

Возможность функционирования рабочих станций даже при отсутствии сервера

Необходимость в случае модернизации сети наращивания производительности не только сер­вера, но и рабочей станции

Недостаточная безопасность данных, которые хранятся на рабочих станциях

Возможность расширения до уровня промышленной сети

3. Одноранговая среда

Эта модель разработана для небольших (до 15 рабочих станций) локальных сетей и чаще всего разворачивается в малых офисах. Принцип ее работы построен на том, что каждая рабочая станция функционирует в режиме сервера, предоставляя доступ к своим данным и устройствам любой другой станции, обладающей для этого необходимыми полномочиями.

Достоинства и недостатки одноранговой модели:

Привлекательное отношение стоимость/эффективность, причиной чего является отсутствие вы­деленного сервера

Рабочим станциям предоставлен доступ ко всем ресурсам

Отсутствие централизованного управления и обеспечения безопасности

Невозможность преобразования в большую сеть

Возможность сбоя всей сети после выхода из строя отдельной рабочей станции

4. Среда, развернутая на базе WWW

Структура модели напоминает среду мэйнфрейма, в которой центральный сервер предоставляет пользователям свои "страницы" информации для просмотра и взаимодействия с ними. Каждый пользователь такой сети может использовать эти страницы либо на своей локальной машине, либо на сервере.

Основные достоинства и недостатки этой среды:

Заманчивое соотношение стоимость/эффективность в случае использования с целью объединения локальной и глобальной сети

Возможность инсталляции и обновления версий приложений без необходимости непосредственного взаимодействия с рабочими станциями клиентов

Наиболее уязвимым к отказам звеном сети является Web-сервер

Недостаточно надежное обеспечение безопасности из-за возможности внешнего доступа к сети

Возможность развертывания в средах с низкой пропускной способностью или большим графиком

Возможность интеграции с Internet.

Выбор программного обеспечения

Сетевые ОС

После выбора оптимальной сетевой модели и составления списков необходимых приложений сетевыми специалистами и пользователями следует определить возможные сетевые операционные системы. Учитываемые при принятии данного решения факторы очень похожи на рассмотренные выше:

Стоимость и схема лицензирования

Простота инсталляции и конфигурации

Простота использования

Минимум усилий для обслуживания

Доступный уровень технической поддержки


  • Требования к ресурсам компьютера

Поддержка аппаратных средств

Возможность последующей модернизации

Уровень поддержки независимых разработчиков (как прикладного ПО, так и самой ОС)

Возможности обучения системных администраторов

Выбор аппаратных средств

Выбранное программное обеспечение6 определяет требования к аппаратному обеспечению. Требования к аппаратным средствам сети можно условно разделить на три основных типа:

Требования к аппаратным средствам сервера

Требования к аппаратным средствам рабочей станции

Требования к периферийным устройствам (принтеры, модемы, сканеры и т.д.)

Рекомендуется устанавливать оборудование компании, которая лидирует в данной области рынка, предлагает хорошую поддержку своих продуктов, обеспечивает решение проблем совместимости своих аппаратных средств с аппаратными средствами других производителей.

Выбор аппаратных средств сервера практически полностью определяется используемой сетевой операционной системой, а оборудование рабочих станций определяется приложениями, которые планируется на них запускать. Оборудование пользователей желательно разделить на несколько категорий. Например, для разработчиков ПО, САПР, художников аналитиков фирмы рекомендуются старшие модели РС, для помощников администраторов, агентов по сбыту,секретарей и т.д. – стандартные модели РС, для руководителей, менеджеров - старшие модели РС или, если они часто перемещаются, то мощные портативные РС.

Последним пунктом рассмотрения являются периферийные устройства. Как правило, их выбор определяется коммерческими требованиями каждого отдела. Например, есть ли необходимость в высококачественной печати графики? Требуется ли высокая скорость печати? Нужен ли для работы цветной принтер?

Располагать периферийные устройства целесообразно в тех местах, где они будут доступны максимальному количеству пользователей.

При оформлении итоговой документации на аппаратные средства сети необходимо составить следующие основные спецификации:

Аппаратные средства настольных систем:

Производитель и модель системы (указать отдельно для разных категорий пользователей)

Процессор

Жесткие диски

Сетевые адаптеры

Аппаратные средства серверов

Производитель и модель системы

Процессор

Жесткие диски (указать все способы резервирования: зеркальное отображение, дублирование, использование массивов RAID)

Сетевые адаптеры

Дополнительные периферийные устройства

Изготовитель и модель периферийных систем

Специфические настройки узла

Используемые интерфейсы (последовательный, параллельный или другой)

Оценка трафика сети

После выбора окончательной конфигурации аппаратных средств и ПО сети необходимо оценить объемы и типы передаваемых в ней данных в соответствии со схемой потоков данных. Это позволит определить возможные периоды максимальной и средней загрузки сети, оценить ее масштабируемость, провести анализ размещения информации на серверах и распределенной обработки информации внутри рабочих групп. Это даст возможность оптимизировать архитектуру сети для равномерного распределения нагрузки, правильно выполнить ее сегментирование, выбрать необходимые сетевые устройства типа концентраторов, коммутаторов, маршрутизаторов и шлюзов.

Документация

Документация по сетевому проекту должна содержать следующие сведения:


  • Коммерческие требования

  • Логическая схема

  • Физическая схема

  • Прикладное ПО (смета затрат)

  • Сетевой ПО (смета затрат)

  • Аппаратные средства (сервера, рабочие станции и периферийные устройства) (смета затрат)

  • Сетевые аппаратные средства (смета затрат)

  • Общая смета затрат

Необходимо по каждому пункту да­вать краткие объяснения о том, какие альтернативы существовали, и почему было выбрано то или иное решение.

Администрирование

Понятие "сетевое администрирование" описывает все аспекты установки и поддержки пользователей/ групп или файлов/каталогов. Хотя значение этого термина одинаково для всех сетевых сред, работа сетевых администраторов на различных узлах существенно отличается.

Уровень технических знаний и навыков работы администраторов также значительно отличается. В приведенном ниже списке перечислены вопросы, на которые сетевой администратор должен знать ответы:

Как зарегистрировать новых пользователей?

Как удалить уже зарегистрированных пользователей?

Какова структура томов на сервере?

Какие каталоги расположены в отдельных томах?

Как спланированы мероприятия резервирования?

Существуют ли какие-либо особые требования к конфигурации узла?

Каков уровень безопасности каждого каталога отдела или пользователя?

Необходимо ли копировать данные на центральный сервер с целью резервирования их на случай сбоя в работе локального оборудования?

Каким образом настраивается сервер?

С чем связаны возможные сбои в работе сервера?

Приведенный список описывает все основные обязанности сетевых администраторов по поддержке нормальной работы сервера.

Для организации управления и поддержки сети необходима документация, которая содержала бы следующие основные разделы:

Работа с пользователями

Соглашения о присвоении пользовательских имен

Правила регистрации и удаления пользователей

Управление информацией

Соглашения о присвоении имен томов

Структура каталогов (приложения, каталоги пользователей, каталоги отделов)

Ограничения на размер каталогов (необязательно)

Управление сетью

Соглашения о присвоении имен серверов

Сведения о маршрутизаторах и шлюзах

Безопасность

Сценарии входа в сеть/привилегии различных отделов

Ограничение доступа с помощью паролей

Определение часов доступа

Средства восстановления (загрузочные диски, редакторы поврежденных секторов, определенные кон­фигурационные файлы сервера и т.п.).

Отслеживание (ведение статистики), разрешение возникающих проблем

Для поддержания работоспособного состояния сети необходимо разработать план восстановления ее работоспособности после аварийной ситуации и план поддержки работы сети. Типичный план восстановления работоспособности сети включает следую­щие моменты:

Определение уровней важности всех приложений и систем (необходимый, жизненно важный, кри­тически важный)

Составление описаний систем среды (электрическая, нагревание/охлаждение)

Определение групп, ответственных за устранение сбоев, и ситуаций, в которых к этим группам сле­дует обращаться

Определение видов поддержки, предоставляемой группами

Определение характеристик аппаратных средств (эта информация берется из документации)

Оценка и составление плана действий на непредвиденные ситуации (простой, замена, функциони­рование в автономном режиме)

Выбор руководителя, которого в первую очередь следует известить о сбое в работе сети

Определение действий в нестандартных ситуациях (пожар, угроза взрыва бомбы, стихийное действие)

Составление расписания отключений и тестирования критически важных систем

Несмотря на кажущуюся тривиальность этих пунктов, они являются основными моментами не только корректного функционирования сети, но и успешной карьеры сетевого админи­стратора.

В обязанности отдела по обслуживанию сети также входит поддержка пользователей , организация мероприятий по их обучению и оказание помощи в решении их проблем. Поддержка может быть организована в виде электронной почты, центральной базы данных, к которой с вопросами обращаются пользова­тели, в простейшем случае – телефонной связи.

Ведение статистики и дальнейший анализ отказов определенного типа (постоянно сбоит какой-то вид обору­дования, существуют определенные факторы, влияющие на стабильность работы приложений) позволит принять верное решение о необходимости проведения модернизации или замены какого-либо компонента сетевой среды.

Основные этапы проектирования ЛВС

Перед выполнением работ по монтажу ЛВС проводятся мероприятия по разработке и проектированию локальных сетей. К этому процессу могут привлекаться различные специалисты, которые должны учесть все конструктивные особенности здания и отдельных помещений, где планируется прокладка ЛВС. В результате получают технический проект, составленный
в соответствии с нормами и правилами, принятыми в РФ. Он включает схему монтажа
локальной сети, описание ее основных характеристик, с указанием регламентирующих
их нормативных документов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
    • 1.6 Выбор технологий
    • Заключение

Введение

Темой моей курсовой работы стал процесс проектирования локальной вычислительной сети. Эта тема достаточно актуальна, так как она обусловлена всемирной тенденцией объединения компьютеров в сети. Компьютерная Вычислительная сеть -- это совокупность компьютеров, соединенных линиями связи. Кабелями, сетевыми адаптерами и другими коммуникационными устройствами называются линии связи. Можно сказать, что все сетевое оборудование работает под управлением прикладного программного обеспечения.

Актуальность темы определяется тем, что компьютерные сети прочно вошли в нашу жизнь. Они применяются почти во всех сферах жизни: от обучения до управления производством, от расчетов на бирже до домашней WI-FI сети. С одной стороны, они являются частным случаем распределённых компьютерных систем, а с другой - могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Цель: Спроектировать локальную вычислительную группы компьютерных классов учебного заведения.

Объект исследования: Процесс проектирования локальной вычислительной сети.

Методы исследования которые заключаются систематизация и анализа учебной и нормативно-технической литературы, а также интернет ресурса, рекомендация производителей телекоммуникационного оборудования и современных стандартов.

Предмет исследования: Поиск и обработка знаний о предмете исследования будет вестись с помощью учебных материалов, указанных в списке литературы и ресурсов сети Интернет.

Задачи работы:

1. Теоретическое обоснование построение вычислительной локальной сети;

2. Проработка предпосылок и условий для создания вычислительной сети;

3. Создание проекта вычислительной локальной сети.

1. Теоретическое обоснование построения вычислительной локальной сети

1.1 Локальные и глобальные сети. Сети других типов классификации

Для того чтобы создать проект ЛВС необходимо прежде всего с начало в первую очередь определить чем отличается ЛВС от других типов сетей.

Локальная вычислительная сеть представляет собой систему распределенной обработки данных, охватывающую небольшую территорию (диаметром до 10 км) внутри учреждений, вузов, банков, офисов и т. д.

· PAN -- персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.

· ЛВС (LAN), -- локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода. Локальные сети являются сетями закрытого типа, доступ к ним разрешён только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.

· CAN (кампусная сеть) -- объединяет локальные сети близко расположенных зданий.

· MAN -- городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.

· WAN -- глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства.

· Термин "корпоративная сеть" также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По способу управления

К лиент/сервер - в них выделяется один или несколько узлов (их название - серверы), выполняющих в сети управляющие или специальные обслуживающие функции, а остальные узлы (клиенты) являются терминальными, в них работают пользователи. Сети клиент/сервер различаются по характеру распределения функций между серверами, другими словами по типам серверов. При специализации серверов по определенным приложениям имеем сеть распределенных вычислений. Такие сети отличают также от централизованных систем, построенных на мэйнфреймах;

Одноранговые - сети в них все узлы равноправны; поскольку в общем случае под клиентом понимается объект (устройство или программа), запрашивающий некоторые услуги, а под сервером - объект, предоставляющий эти услуги, то каждый узел в одноранговых сетях может выполнять функции и клиента, и сервера.

По методу доступа

Ти пичная среда передачи данных в локальных вычислительных сетях - отрезок (сегмент) коаксиального кабеля. К нему через аппаратуру окончания канала данных подключаются узлы - компьютеры и возможно общее периферийное оборудование. Поскольку среда передачи данных общая, а запросы на сетевые обмены у узлов появляются асинхронно, то возникает проблема разделения общей среды между многими узлами, другими словами, проблема обеспечения доступа к сети. Доступ к сети - взаимодействие станции (узла сети) со средой передачи данных для обмена информацией с другими станциями. Управление доступом к среде - это установление последовательности, в которой станции получают доступ к среде передачи данных. Различают случайные и детерминированные методы доступа. Среди случайных методов наиболее известен метод множественного доступа с контролем несущей и обнаружением конфликтов.

1.2 Сравнительный анализ различных топологий сетей

На данный момент существуют способы объединение компьютеров. Способ описания конфигурации сети, схема расположения и соединения сетевых устройств характеризуется термином сетевая тополомгия.

Выделим наиболее распространенные сетевые топологии:

Шинная - локальная сеть, в которой связь между любыми двумя станциями устанавливается через один общий путь и данные, передаваемые любой станцией, одновременно становятся доступными для всех других станций, подключенных к этой же среде передачи данных.

Кольцевая - узлы связаны кольцевой линией передачи данных (к каждому узлу подходят только две линии); данные, проходя по кольцу, поочередно становятся доступными всем узлам сети;

Звездная - имеется центральный узел, от которого расходятся линии передачи данных к каждому из остальных узлов;

Иерархическая - каждое устройство обеспечивает непосредственное управление устройствами, находящимися ниже в иерархии.

Термин "топология", или "топология сети", характеризует физическое расположение компьютеров, кабелей и других компонентов сети.

Топология - стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина "топология", для описания физической компоновки используют также следующие:

Физическое расположение; компоновка;

Диаграмма;

Топология сети обуславливает ее характеристики. В частности, выбор той или иной топологии влияет:

На состав необходимого сетевого оборудования;

Характеристики сетевого оборудования;

Возможности расширения сети;

Способ управления сетью.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель.

Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.

Сравнительный анализ топологий организации сетей

Сравнительный анализ проведён на основе следующих показателей:

1) Простота структурной организации. Измеряемая количеством каналов связи между узлами сети

2) Надежность. Определяется наличием узких мест, при отказе которых сеть перестает функционировать. Надежность также характеризуется наличием альтернативных путей благодаря которым при отказе отдельных каналов связь может быть установлена в обход отказавшего участка

3) Производительность сети. Определяется количеством блоков данных передаваемых по сети в единицу времени. При этом необходимо учитывать возможность снижения скорости из-за конфликтов в сети

4) Время доставки сообщений. Может измеряться не обязательно во временных единицах.

5) Стоимость топологии. Определяется как стоимостью аппаратуры, так и сложностью реализации сети.

Составим таблицу сравнения различных топологий по указанным признакам. Признаки будут оцениваться значениями от 1 до 5, причем 1 - это наилучшее значение.

Таблица 1

Сравнительный анализ топологии сетей

Простота структурной организации и стоимость - это два показателя, которые очень сильно зависят друг от друга. По количеству каналов связи наиболее простой топологий является общая шина, которая имеет только 1 канал связи. Сеть строится на основе сетевой карты. Отсутствие сложностей при добавлении новых компьютеров, также добавляет преимущества этой топологии. Таким образом, общая шина несомненно самая простая и дешевая топология. К сравнительно дешевым можно также отнести топологи звезда и дерево, что связано с малым количеством типов связей между узлами, т.е. каждый компьютер связан напрямую с центральным узлом. Далее следует топология кольцо. В ней количество каналов связи равно количеству узлов. Полносвязная топология является наиболее сложной, и дорогой, соответственно. Это делает нецелесообразным использование такой топологии при построении больших сетей. При построении глобальных сетей наибольшее распространение получила многосвязная\ячеистая топология. Она занимает промежуточное положение по этим показателям, однако альтернативы этой топологии в глобальных сетях нет, потому что такие сети не строятся с нуля, а объединяет уже существующие сети.

Надежность. По этому показателю лидером является полносвязная топология. У нее отсутствуют узкие места и имеется максимально возможное количество альтернативных путей при выходе какого-либо звена из строя. Наименее надежные топологии: общая шина, звезда и дерево. Топология кольцо занимает промежуточное положение, также как и многосвязная.

Производительность сети. Если в качестве единицы измерения производительности использовать количество пакетов, передаваемых в сети за единицу времени, то очевидно, что производительность будет тем выше, чем больше пакетов одновременно находится в сети. С увеличением числа пакетов производительность растет и при каком-то значении наступает насыщение. Насыщение обычно связано с каким-то узлом или каналом в сети, нагрузка которого приближается к 1. Поэтому при построении такой сети стараются обеспечить равную пропускную способность для всех каналов, что обеспечивает максимальную производительность для полносвязной топологии и минимальную производительность для общей шины.

Время доставки. Необходимо анализировать при условии отсутствия узких мест в сети. В этом случае время доставки напрямую связано с числом хопов, т.е. каналов связи между соседними узлами. Время доставки в 1 хоп обеспечивает полносвязная топология. Наибольшее время доставки при большом количестве узлов в сети с топологией кольцо. Наиболее сложно оценить время доставки в топологии общая шина. Это связано с тем, что шина используется всеми узами, и если для одного узла время доставки оказывается минимальным, то другие узлы ждут своей очереди, и время доставки резко увеличивается. Кроме того в топологии общей шины на время доставки оказывает влияние оказывают коллизии, т.е. столкновения пакетов.

Представленный анализ носит качественный характер и не может использоваться для количественной оценки. Решение об использовании той или иной топологии должно приниматься на основе учета всех параметров. При этом может оказаться, что более сложная топология оказывается дешевле, чем более простая.

На основе приведенного материала, было принято решение о применении топологии "звезда", так как она обладает наибольшей эффективностью из представленных.

1.3 Анализ источников стандартизация сетей. Структура стандарта IEEE 802.x

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1...5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень делится в локальных сетях на два подуровня:

Логической передачи данных (Logical Link Control, LLC);

Управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот.

Стандарты IEEE 802 имеют достаточно четкую структуру, указанную на рисунке 1.1.

Рисунок 1.1

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

802.1 - Internetworking - объединение сетей;

802.2 - Logical Link Control, LLC - управление логической передачей данных;

802.3 - Ethernet с методом доступа CSMA/CD;

802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

802,8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

802.10 - Network Security - сетевая безопасность;

802.11 - Wireless Networks - беспроводные сети;

802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.

На основе выполненного анализа было принято решение использовать при проектировании локальной вычислительной сети следующий подкомитет IEEE 802.3. Спецификация данного подкомитета будут рассмотрены ниже.

1.4 Исследование элементов структурированной кабельной системы (СКС)

Кабельная система является фундаментом любой сети. Ответом на высокие требования к качеству кабельной системы стали структурированные кабельные системы.

Структурированная кабельная система представляет собой набор коммуникационных элементов - кабелей, разъемов, коннекторов, кроссовых панелей и шкафов, которые удовлетворяют стандартам и позволяют создавать регулярные, легко расширяемые структуры связей.

Структурированная кабельная система состоит из трех подсистем: горизонтальной (в пределах этажа), вертикальной (между этажами) и подсистемы кампуса (в пределах одной территории с несколькими зданиями).

Для горизонтальной подсистемы характерно наличие большого количества ответвлений и перекрестных связей. Наиболее подходящий тип кабеля - неэкранированная витая пара категории 5.

Вертикальная подсистема состоит из более протяженных отрезков кабеля, количество ответвлений намного меньше, чем в горизонтальной подсистеме. Предпочтительный тип кабеля - волоконно-оптический.

Для подсистемы кампуса характерна нерегулярная структура связей с центральным зданием. Предпочтительный тип кабеля - волоконно-оптический в специальной изоляции.

Кабельная система здания строится избыточной, так как стоимость последующего расширения кабельной системы превосходит стоимость установки избыточных элементов.

Для строительства СКС почти всегда используются коммутаторы или концентраторы. В связи с этим появляется вопрос - какое устройство использовать?

При передаче данных между компьютерами пакет содержит не только передаваемые данные, но и адрес компьютера-получателя.

Концентратор игнорирует адрес, содержащийся в пакете, и пересылает данные всем компьютерам, подключенным к нему. Пропускная способность концентратора (количество бит в секунду, которые способен передавать концентратор) делится между задействованными портами, поскольку данные передаются всем одновременно. Компьютер читает адрес, и только законный получатель принимает пакет данных (остальные компьютеры его игнорируют).

Коммутатор работает более интеллектуально -- он хранит информацию о компьютерах в памяти и знает, где находится получатель. Коммутатор передает данные порту этого компьютера и обслуживает только этот порт.

Это крайне упрощенное описание принципов работы концентраторов и коммутаторов, но оно дает общее представление о процессе. Также учтите, что здесь описан очень простой коммутатор, тогда как для мощных коммутаторов, используемых в крупных сетях, существуют более совершенные технологии.

Кстати говоря, в маршрутизаторах имеются встроенные коммутаторы, а не концентраторы. .

На основе приведенной информации было принято решение о использовании коммутаторов (свичей) при постройке сети.

1.5 Выбор кабеля. Основные типы кабелей и их характеристики

Кабели категории 1 применяются там, где требования к скорости передачи минимальны. Обычно это кабель для цифровой и аналоговой передачи голоса и низкоскоростной (до 20 Кбит/с) передачи данных.

Кабели категории 2 были впервые применены фирмой IBM при построении собственной кабельной системы. Главное требование к кабелям этой категории - способность передавать сигналы со спектром до 1 МГц.

Кабели категории 3 были стандартизованы в 1991 году, когда был разработан Стандарт телекоммуникационных кабельных систем для коммерческих зданий (EIA-568), на основе которого затем был создан действующий стандарт EIA-568A. Стандарт EIA-568 определил электрические характеристики кабелей категории 3 для частот в диапазоне до 16 МГц, поддерживающих, таким образом, высокоскоростные сетевые приложения. Кабель категории 3 предназначен как для передачи данных, так и для передачи голоса.

Кабели категории 4 представляют собой несколько улучшенный вариант кабелей категории 3. Кабели категории 4 обязаны выдерживать тесты на частоте передачи сигнала 20 МГц и обеспечивать повышенную помехоустойчивость и низкие потери сигнала. Кабели категории 4 хорошо подходят для применения в системах с увеличенными расстояниями (до 135 метров) и в сетях Token Ring с пропускной способностью 16 Мбит/с. На практике используются редко.

Кабели категории 5 были специально разработаны для поддержки высокоскоростных протоколов. Поэтому их характеристики определяются в диапазоне до 100 МГц. Большинство новых высокоскоростных стандартов ориентируются на использование витой пары 5 категории. На этом кабеле работают протоколы со скоростью передачи данных 100 Мбит/с - FDDI, Fast Ethernet, l00VG-AnyLAN, а также более скоростные протоколы - АТМ на скорости 155 Мбит/с, и Gigabit Ethernet на скорости 1000 Мбит/с (вариант Gigabit Ethernet на витой паре категории 5 стал стандартом в июне 1999 г.). Кабель категории 5 пришел на замену кабелю категории 3, и сегодня все новые кабельные системы крупных зданий строятся именно на этом типе кабеля (в сочетании с волоконно-оптическим).

Наиболее важные электромагнитные характеристики кабеля категории 5 имеют следующие значения:

Полное волновое сопротивление в диапазоне частот до 100 МГц равно 100 Ом;

Величина перекрестных наводок NEXT в зависимости от частоты сигнала должна принимать значения не менее 74 дБ на частоте 150 кГц и не менее 32 дБ на частоте 100 МГц;

Затухание имеет предельные значения от 0,8 дБ (на частоте 64 кГц) до 22 дБ (на частоте 100 МГц);

Активное сопротивление не должно превышать 9,4 Ом на 100 м;

Емкость кабеля не должна превышать 5,6 нф на 100 м.

Все кабели UTP независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, а две - для передачи голоса.

Для соединения кабелей с оборудованием используются вилки и розетки RJ-45, представляющие 8-контактные разъемы, похожие на обычные телефонные разъемы. RJ-11.

Данная информация позволяет сделать вывод о том, что для построения локальной сети наиболее предпочтителен кабель UTP 5-й категории. .

1.6 Выбор технологий

1.6.1 Технология Ethernet. Методы доступа и форматы кадров технологии Ethernet

Рассмотрим, каким образом описанные выше общие подходы к решению наиболее важных проблем построения сетей воплощены в наиболее популярной сетевой технологии - Ethernet.

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет "достаточный" подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно построить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стандарта Ethernet применения протокола IP, а также специальных коммуникационных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами технологии Ethernet, которая составила базис сети.

Термин "сетевая технология" чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набора средств и правил для построения сети, например, "технология сквозной маршрутизации", "технология создания защищенного канала", "технология IP-сетей".

Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разработчика сети не требуется дополнительных усилий по организации их взаимодействия. Иногда сетевые технологии называют базовыми технологиями, имея в виду то, что на их основе строится базис любой сети. Примерами базовых сетевых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей как, Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммутаторы, кабельную систему и т.п., - и соединить их в соответствии с требованиями стандарта на данную технологию. Основной принцип, положенный в основу Ethernet, - случайный метод доступа к разделяемой среде передачи данных. В качестве такой среды может использоваться толстый или тонкий коаксиальный кабель, витая пара, оптоволокно или радиоволны (кстати, первой сетью, построенной на принципе случайного доступа к разделяемой среде, была радиосеть Aloha Гавайского университета).

В стандарте Ethernet строго зафиксирована топология электрических связей. Компьютеры подключаются к разделяемой среде в соответствии с типовой структурой "общая шина". С помощью разделяемой во времени шины любые два компьютера могут обмениваться данными. Управление доступом к линии связи осуществляется специальными контроллерами - сетевыми адаптерами Ethernet. Каждый компьютер, а более точно, каждый сетевой адаптер, имеет уникальный адрес. Передача данных происходит со скоростью 10 Мбит/с. Эта величина является пропускной способностью сети Ethernet. Изначально сеть Ethernet выглядела так (рис. 1.2)

Рисунок 1.2.

Метод доступа

Суть случайного метода доступа состоит в следующем. Компьютер в сети Ethernet может передавать данные по сети, только если сеть свободна, то есть если никакой другой компьютер в данный момент не занимается обменом. Поэтому важной частью технологии Ethernet является процедура определения доступности среды.

После того как компьютер убедился, что сеть свободна, он начинает передачу, при этом "захватывает" среду. Время монопольного использования разделяемой среды одним узлом ограничивается временем передачи одного кадра. Кадр - это единица данных, которыми обмениваются компьютеры в сети Ethernet. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию, например адрес получателя и адрес отправителя.

Сеть Ethernet устроена так, что при попадании кадра в разделяемую среду передачи данных все сетевые адаптеры одновременно начинают принимать этот кадр. Все они анализируют адрес назначения, располагающийся в одном из начальных полей кадра, и, если этот адрес совпадает с их собственным адресом, кадр помещается во внутренний буфер сетевого адаптера. Таким образом, компьютер-адресат получает предназначенные ему данные. .

Формат кадров

Существует несколько форматов Ethernet-кадра.

Первоначальный Version I (больше не применяется).

Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX-- наиболее распространена и используется по сей день. Часто используется непосредственно протоколом Интернет.

Рисунок 1. 3.Формат кадра Ethernet

Наиболее распространенный формат кадра Ethernet II

Novell -- внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).

Кадр IEEE 802.2 LLC.

Кадр IEEE 802.2 LLC/SNAP.

Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.

В качестве дополнения Ethernet-кадр может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.

Разные типы кадра имеют различный формат и значение MTU.

На основе данной информации для локальной сети здания, рассматриваемой в курсовой работе, была выбрана технология Ethernet.

1.6.2 Высокоскоростные технологии компьютерных сетей: Fast Ethernet, Gigabit Ethernet, 10G Ethernet

Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же, и их описывают прежние главы стандартов 802.3 и 802.2. Поэтому рассматривая технологию Fast Ethernet, мы будем изучать только несколько вариантов ее физического уровня.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем:

Волоконно-оптический многомодовый кабель, используются два волокна; локальный вычислительный сеть кабель

Коаксиальный кабель, давший первую сеть Ethernet, в число разрешенных сред передачи данных новой технологии Fast Ethernet не попал. Это общая тенденция многих новых технологий, поскольку на небольших расстояниях витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, но сеть получается более дешевой и удобной в эксплуатации. На больших расстояниях оптическое волокно обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе.

Ниже на рисунке наглядно показаны отличия технологии Fast Ethernet и Ethernet друг от друга.

Рисунок 1.4.

Gigabit Ethernet.

Основная идея разработчиков Gigabit Ethernet состояла в максимальном сохранении идей технологии Ethernet при достижении скорости 1000 Mb/s, сохраняя все форматы кадров Ethernet. По-прежнему существует полудплексная версия протокола, поддерживающая метод доступа CSMA/СD. Сохраняя дешевизну решения на основе разделяемой среды позволяет применять Gigabit Ethernet в небольших рабочих группах, имеющих быстрые серверы и рабочие станции. Поддерживаются все основные виды кабелей, используемых Ethernet в Fast Ethernet волоконно-оптический, витая пара категории 5, неэкранированная витая пара.

10-Gigabit Ethernet.

Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.

10GBASE-CX4 -- технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

10GBASE-SR -- технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового волокна (2000 МГц/км).

10GBASE-LX4 -- использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового волокна.

10GBASE-LR и 10GBASE-ER -- эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

10GBASE-SW, 10GBASE-LW и 10GBASE-EW -- эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

10GBASE-T, IEEE 802.3an-2006 -- принят в июне 2006 года после 4 лет разработки. Использует витую пару категории 6 (максимальное расстояние 55 метров) и 6а (максимальное расстояние 100 метров).

10GBASE-KR -- технология 10-гигабитного Ethernet для кросс-плат (backplane/midplane) модульных коммутаторов/маршрутизаторов и серверов (Modular/Blade).

Компания Harting заявила о создании первого в мире 10-гигабитного соединителя RJ-45, не требующего инструментов для монтажа -- HARTING RJ Industrial 10G .

1.6.3 Локальные сети на основе разделяемой среды: технология TokenRing, технология FDDI

Разделяемая среда -- способ организации работы сети, при котором сообщение от одной рабочей станции достигает всех других при помощи одного общего канала связи.

Алгоритм доступа к разделяемой среде - главный фактор, определяющих эффективность совместного использования среды конечными узлами локальной сети. Можно сказать, что алгоритм доступа формирует "облик" технологии, позволяет отличать данную технологию от других.

В технологии Ethernet применяется очень простой алгоритм доступа, позволяющий узлу сети передавать данные в те моменты времени, когда он считает, что разделяемая среда свободна. Простота алгоритма доступа определила простоту и низкую стоимость оборудования Ethernet. Негативным атрибутом алгоритма доступа технологии Ethernet являются коллизии, то есть ситуации, когда кадры, передаваемые разными станциями, сталкиваются друг с другом в общей среде. Коллизии снижают эффективность разделяемой среды и придают работе сети непредсказуемый характер.

Первоначальный вариант технологии Ethernet был рассчитан на коаксиальный кабель, который использовался всеми узлами сети в качестве общей шины. Переход на кабельные системы на витой паре и концентраторах (хабах) существенно повысил эксплуатационные характеристики сетей Ethernet.

В технологиях Token Ring и FDDI поддерживались более сложные и эффективные алгоритмы доступа к среде, основанные на передаче друг другу токена -- специального кадра, разрешающего доступ. Однако чтобы выжить в конкурентной борьбе с Ethernet, этого преимущества оказалось недостаточно.

Технология Token Ring (802.5)

Сети Token Ring, так же как и сети Ethernet, характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в станцию - отправитель.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса, Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

FDDI

Технология FDDI - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

Повысить битовую скорость передачи данных до 100 Мбит/с;

Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим называется режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями. .

1.7 Анализ спецификаций физической среды Fast Ethernet

Спецификации физической среды стандарта 802.3z

В стандарте 802.3z определены следующие типы физической среды:

Одномодовый волоконно-оптический кабель;

Многомодовый волоконно-оптический кабель 62,5/125;

Многомодовый волоконно-оптический кабель 50/125;

Двойной коаксиал с волновым сопротивлением 75 Ом.

Многомодовый кабель

Для передачи данных по традиционному для компьютерных сетей многомодовому волоконно-оптическому кабелю стандарт определяет применение излучателей, работающих на двух длинах волн: 1300 и 850 нм. Применение светодиодов с длиной волны 850 нм объясняется тем, что они намного дешевле, чем светодиоды, работающие на волне 1300 нм, хотя при этом максимальная длина кабеля уменьшается, так как затухание многомодового оптоволокна на волне 850 м более чем в два раза выше, чем на волне 1300 нм. Однако возможность удешевления чрезвычайно важна для такой в целом дорогой технологии, как Gigabit Ethernet.

Для многомодового оптоволокна стандарт 802.3z определил спецификации l000Base-SX и l000Base-LX.

В первом случае используется длина волны 850 нм (S означает Short Wavelength, короткая волна), а во втором - 1300 нм (L - от Long Wavelength, длинная волна).

Для спецификации l000Base-SX предельная длина оптоволоконного сегмента для кабеля 62,5/125 оставляет 220 м, а для кабеля 50/125 - 500 м. Очевидно, что эти максимальные значения могут достигаться только для полнодуплексной передачи данных, так как время двойного оборота сигнала на двух отрезках 220 м равно 4400 bt, что превосходит предел 4095 bt даже без учета повторителя и сетевых адаптеров. Для полудуплексной передачи максимальные значения сегментов оптоволоконного кабеля всегда должны быть меньше 100 м. Приведенные расстояния в 220 и 500 м рассчитаны для худшего по стандарту случая полосы пропускания многомодового кабеля, находящегося в пределах от 160 до 500 МГц/км. Реальные кабели обычно обладают значительно лучшими характеристиками, находящимися между 600 и 1000 МГц/км. В этом случае можно увеличить длину кабеля до примерно 800 м.

Одномодовый кабель

Для спецификации l000Base-LX в качестве источника излучения всегда применяется полупроводниковый лазер с длиной волны 1300 нм.

Основная область применения стандарта l000Base-LX - это одномодовое оптоволокно. Максимальная длина кабеля для одномодового волокна равна 5000 м.

Спецификация l000Base-LX может работать и на многомодовом кабеле. В этом случае предельное расстояние получается небольшим - 550 м. Это связано с особенностями распространения когерентного света в широком канале многомодового кабеля. Для присоединения лазерного трансивера к многомодовому кабелю необходимо использовать специальный адаптер. .

2. Создание проекта вычислительной локальной сети

При создании локальной вычислительной сети предполагается, что:

1. Трафик каждого класса изолирован от других.

2. Имеется три компьютерных класса в первом: пять компьютеров; во втором - одиннадцать компьютеров; в третьем - три компьютера.

3. Удалённость от места подключения составляет: 1-87 метров; 2-74 метра; 3-74 метра.

4. Сеть является одноранговой со скоростью 100 мб/с, без выхода к интернету.

Стоимость реализации проекта

Таблица 2

Затраты на приобретение сетевого оборудования

Оборудование

Характеристики

Количество

Сетевая карта

COM-3CSOHO100Tx Office Connect Fast Ethernet PCI 10\100 Base-TX

Коммутатор

COM-3C16471 SS 3 Baseline 2024 24*10\100TX

Коннектор

Антивирус

Операционная система

Таблица 3

Конфигурация компьютеров рабочей группы

Тип компьютера

Рабочая станция

Материнская плата

FM2 AMD A75 MSI FM2-A75MA-P33

Процессор

AMD Athlon II X2 250

Видеоадаптер

Встроен в МП

Сетевая карта

10/100/1000Mbps PCI Adapter, 32 bit, WOL, Jumbo, Retail

Блок питания

430 Watt ATX Power Supply

Жесткий диск

HDD Seagate 80Gb , 7200rpm, SATA-II, 8mb cache

INWIN C602 Black/Silver Middle ATX 430W (20+4pin, 12cm fan)

Клавиатура

Sven 330, Silver

A4-Tech MOP-59, red Optical, Mini, USB+PS/2, Roll

Итого:18550*19=352450

Общая стоимость проекта ЛВС без учета затрат на выполнения монтажных работ составило 548777 рублей.

Заключение

В ходе выполнения курсовой работы получены практические и теоретические навыки проектирование вычислительной локальной сети. Во время выполнения курсовой работы создана локальная сеть компьютерных классов учебного заведения.

Исследованы рекомендации производителей телекоммуникационного оборудования, основы стандартов, определены требования к создаваемой системе и, как результат, разработан проект локальной вычислительной сети (ЛВС) условного предприятия.

В курсовой работе представлены необходимые расчеты, рисунки и схемы, спецификация оборудования и материалов, необходимых для построения ЛВС.

Стоимость оборудования и программного обеспечения для сети в общей сложности составила 196327 рублей, а стоимость аппаратного обеспечения компьютеров составила 352450 рублей.

Список источников и литературы

1. В.Г. Олифер. Н.А. Олифер Компьютерные сети, принципы, технологии, протоколы 4-е издание 2010. - глава 2 стр. 55,3 стр. 103,5 стр. 139.

2. Пескова С.А., Кузин А.В., Волков А.Н. Сети и телекоммуникации (3-е изд.) 2008 стр. 232

4. Интернет - ресурс Lulu.ts6.ru. Режим доступа http.// 1.20.htm

5. Таненбаум Э., Уэзеролл Д. Компьютерные сети. 5-е издание 2012

6. Таненбаум Э. Компьютерные сети. Принципы, технологии, протоколы. / Э. Таненбаум. - СПб.: Питер, 2007.

7. Максимов Н.В. Компьютерные сети: Учебное пособие [Текст] / Н.В. Максимов, И.И. Попов - М.: ФОРУМ: ИНФРА-М, 2005. - стр. 109-111

8. Компьютерные сети. Учебный курс [Текст] / Microsoft Corporation. Пер. с анг. - М.: "Русская редакция" ТОО "Channel Trading Ltd.", 1998. -стр. 258.

9. Крейг Закер Компьютерные сети БХВ-Петербург, 2001 стр. 7, 253, 234

10. Кэти Айвенс Компьютерные сети Питер 2006 стр. 29.

11. www.ieeer8.org

Размещено на Allbest.ru

Подобные документы

    Понятие компьютерных сетей, их виды и назначение. Разработка локальной вычислительной сети технологии Gigabit Ethernet, построение блок-схемы ее конфигурации. Выбор и обоснование типа кабельной системы и сетевого оборудования, описание протоколов обмена.

    курсовая работа , добавлен 15.07.2012

    Особенности локальной вычислительной сети и информационной безопасности организации. Способы предохранения, выбор средств реализации политики использования и системы контроля содержимого электронной почты. Проектирование защищенной локальной сети.

    дипломная работа , добавлен 01.07.2011

    Обзор существующих принципов построения локальных вычислительных сетей. Структурированные кабельные системы (СКС), коммутационное оборудование. Проект локальной вычислительной сети: технические требования, программное обеспечение, пропускная способность.

    дипломная работа , добавлен 25.02.2011

    Аналитический обзор технологий локальных вычислительных сетей и их топологий. Описание кабельных подсистем для сетевых решений и их спецификаций. Расчет локальной вычислительной системы на соответствие требованиям стандарта для выбранной технологии.

    дипломная работа , добавлен 28.05.2013

    Особенности проектирования и модернизация корпоративной локальной вычислительной сети и способы повышения её работоспособности. Физическая структура сети и сетевое оборудование. Построение сети ГУ "Управление Пенсионного фонда РФ по г. Лабытнанги ЯНАО".

    дипломная работа , добавлен 11.11.2014

    Основные возможности локальных вычислительных сетей. Потребности в интернете. Анализ существующих технологий ЛВС. Логическое проектирование ЛВС. Выбор оборудования и сетевого ПО. Расчёт затрат на создание сети. Работоспособность и безопасность сети.

    курсовая работа , добавлен 01.03.2011

    Построение информационной системы для автоматизации документооборота. Основные параметры будущей локальной вычислительной сети. Схема расположения рабочих станций при построении. Протокол сетевого уровня. Интеграция с глобальной вычислительной сетью.

    курсовая работа , добавлен 03.06.2013

    Проектирование локальной вычислительной сети, предназначенной для взаимодействия между сотрудниками банка и обмена информацией. Рассмотрение ее технических параметров и показателей, программного обеспечения. Используемое коммутационное оборудование.

    курсовая работа , добавлен 30.01.2011

    Назначение проектируемой локальной вычислительной сети (ЛВС). Количество абонентов проектируемой ЛВС в задействованных зданиях. Перечень оборудования, связанного с прокладкой кабелей. Длина соединительных линий и сегментов для подключения абонентов.

    реферат , добавлен 16.09.2010

    Назначение, функции и основные требования к комплексу технических и программных средств локальной вычислительной сети. Разработка трехуровневой структуры сети для организации. Выбор оборудования и программного обеспечения. Проектирование службы каталогов.

0

Курсовая работа

Проектирование ЛВС в общеобразовательной средней школе

Введение 3

  1. Создание ЛВС в школе 4
  2. Конструкторская часть 8

2.1 Выбор и обоснование технологии построения ЛВС 8

2.2 Анализ среды передачи данных 8

2.3 Топология сети 8

2.4 Метод доступа 9

  1. Выбор и обоснование аппаратного обеспечения сети 10

3.1 Коммуникационные устройства 10

3.2 Сетевое оборудование 13

3.3 Планировка помещений 16

3.4 Расчет количества кабеля 19

  1. Инструкция по монтажу сети 22
  2. Расчет стоимости оборудования 30

Заключение 31

Список литературы 33

Введение

Локальная вычислительная сеть - это совместное подключение нескольких компьютеров к общему каналу передачи данных, благодаря которому обеспечивается совместное использование ресурсов, таких, как базы данных, оборудование, программы. С помощью локальной сети удаленные рабочие станции объединяются в единую систему, имеющую следующие преимущества:

  1. Разделение ресурсов - позволяет совместно использовать ресурсы, например, периферийные устройства (принтеры, сканеры), всеми станциями, входящими в сеть.
  2. Разделение данных - позволяет совместно использовать информацию, находящуюся на жестких дисках рабочих станций и сервера.
  3. Разделение программных средств - обеспечивает совместное использование программ, установленных на рабочих станциях и сервере.
  4. Разделение ресурсов процессора - возможность использования вычислительных мощностей для обработки данных другими системами, входящими в сеть.

Разработка локальной вычислительной сети будет вестись в здании общеобразовательной школы.

Цель данной работы- расчет технических характеристик разрабатываемой сети, определение аппаратных и программных средств, расположение узлов сети, каналов связи, расчет стоимости внедрения сети.

  1. Создание ЛВС в школе

За последние годы произошло коренное изменение роли и места персональных компьютеров и информационных технологий в жизни общества. Современный период развития общества определяется как этап информатизации. Информатизация общества предполагает всестороннее и массовое внедрение методов и средств сбора, анализа, обработки, передачи, архивного хранения больших объемов информации на базе компьютерной техники, а также разнообразных устройств передачи данных, включая телекоммуникационные сети.

Концепция модернизации образования, проект “Информатизация системы образования” и, наконец, технический прогресс ставят перед образованием задачу формирования ИКТ - компетентной личности, способной применять знания и умения в практической жизни для успешной социализации в современном мире.

Процесс информатизации школы предполагает решение следующих задач:

  • развитие педагогических технологий применения средств информатизации и коммуникации на всех ступенях образования;
  • использование сети Интернет в образовательных целях;
  • создание и применение средств автоматизации психолого-педагогических тестирующих, диагностирующих методик контроля и оценки уровня знаний обучаемых, их продвижения в учении, установления уровня интеллектуального потенциала обучающегося;
  • автоматизация деятельности административного аппарата школы;
  • подготовка кадров в области коммуникативно-информационных технологий.

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8—12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

Локальная вычислительная сеть, ЛВС (англ. Local Area Network, LAN) компьютерная сеть, покрывающая относительно небольшую территорию.

В небольших локальных сетях все компьютеры обычно равноправны, т. е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.

Для увеличения производительности локальной сети, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть — сетью на основе серверов.

Типичная школьная локальная сеть выглядит следующим образом. Имеется одна точка выхода в Интернет, к которой подключается соответствующий маршрутизатор (ADSL или Ethernet). Маршрутизатор связан с коммутатором (свичем), к которому уже подключаются пользовательские ПК. На маршрутизаторе практически всегда активирован DHCP-сервер, что подразумевает автоматическую раздачу IP-адресов всем пользовательским ПК. Собственно, в таком решении есть как свои плюсы, так и минусы. С одной стороны, наличие DHCP-сервера упрощает процесс создания сети, поскольку нет необходимости вручную производить сетевые настройки на компьютерах пользователей. С другой стороны, в условиях отсутствия системного администратора вполне типична ситуация, когда никто не знает пароля доступа к маршрутизатору, а стандартный пароль изменен. Казалось бы, зачем вообще нужно «лезть» в маршрутизатор, если и так все работает? Так-то оно так, но бывают неприятные исключения. К примеру, количество компьютеров в школе увеличилось (оборудовали еще один класс информатики) и начались проблемы с конфликтами IP-адресов в сети. Дело в том, что неизвестно, какой диапазон IP-адресов зарезервирован на маршрутизаторе под раздачу DHCP-сервером, и вполне может оказаться, что этих самых IP-адресов просто недостаточно. Если такая проблема возникает, то единственный способ решить ее, не залезая при этом в настройки самого маршрутизатора, — это вручную прописать все сетевые настройки (IP-адрес, маску подсети и IP-адрес шлюза) на каждом ПК. Причем, дабы избежать конфликта IP-адресов, сделать это нужно именно на каждом ПК. В противном случае назначенные вручную IP-адреса могут оказаться из зарезервированного для раздачи DHCP-сервером диапазона, что со временем приведет к конфликту IP-адресов.

Другая проблема заключается в том, что все компьютеры, подключенные к коммутатору и соответственно имеющие выход в Интернет через маршрутизатор, образуют одну одноранговую локальную сеть, или просто рабочую группу. В эту рабочую группу входят не только компьютеры, установленные в школьном компьютерном классе, но и все остальные компьютеры, имеющиеся в школе. Это и компьютер директора, и компьютер завуча, и компьютеры секретарей, и компьютеры бухгалтерии (если таковая имеется в школе), и все остальные компьютеры с выходом в Интернет. Конечно, было бы разумно разбить все эти компьютеры на группы и назначить каждой группе пользователей соответствующие права. Но, как мы уже отмечали, никакого контроллера домена не предусмотрено, а потому реализовать подобное просто не удастся. Конечно, эту проблему можно было бы частично решить на аппаратном уровне, организовав несколько виртуальных локальных сетей (VLAN) и тем самым физически отделив ученические ПК от остальных компьютеров. Однако для этого нужен управляемый коммутатор (или хотя бы Smart-коммутатор), наличие которого в школе — большая редкость. Но даже если такой коммутатор и имеется, то нужно еще уметь настраивать виртуальные сети. Можно даже не использовать виртуальные сети, а установить дополнительный маршрутизатор и коммутатор и применять различную IP-адресацию (IP-адреса из разных подсетей) для компьютеров в классе информатики и всех остальных компьютеров. Но опять-таки это требует дополнительных затрат на приобретение соответствующего оборудования и опыта по настройке маршрутизаторов. К сожалению, решить проблему разделения школьных компьютеров на изолированные друг от друга группы без дополнительных финансовых затрат нельзя (наличие управляемого коммутатора в школе. исключение из правил). В то же время подобное разделение и не является обязательным. Если рассматривать необходимость такого разделения с точки зрения сетевой безопасности, то проблему безопасности компьютеров учителей и администрации от посягательств со стороны учеников можно решить и другим способом.

  1. Конструкторская часть

2.1 Выбор и обоснование технологии построения ЛВС.

Основным назначением проектируемой вычислительной сети является обеспечение коммуникации между компьютерами сети и предоставление воз-можности передачи файлов на скорости до 100 Мбит/с. Таким образом, для построения ЛВС для всех отделов здания будет использоваться технология Fast Ethernet.

Технологии построения ЛВС. В данной работе для построения сети будет использоваться технология Fast Ethernet, обеспечивающая скорость передачи данных 100 Мбит/с. Также будет применена топология «звез-да» с использованием в качестве линий связи неэкранированной витой пары ка-тегории CAT5.

2.2 Анализ среды передачи данных.

Для передачи данных в Fast Ethernet будет применяться стандарт 100 Base-TX. Используется 4-парный ка-бель категории CAT5. В передаче данных участвуют все пары. Параметры:

 скорость передачи данных: 100 Мбит/с;

 тип используемого кабеля: неэкранированная витая пара категории CAT5;

 максимальная длина сегмента: 100 м.

2.3 Топология сети.

Топология сети определяется размещением узлов в сети и связей между ними. Термин «топология сети» относится к пути, по кото-рому данные перемещаются в сети. Для технологии Fast Ethernet будет использоваться топология «звезда».

Для построения сети со звездообразной архитектурой в центре сети необходимо разместить концентратор (коммутатор). Его основная функция -обеспечение связи между компьютерами, входящими в сеть. То есть все компьютеры, включая файл-сервер, не связываются непосредственно друг с другом, а присоединяются к концентратору. Такая структура надежнее, поскольку в случае выхода из строя одной из рабочих станций все остальные сохраняют работоспособность. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой, невысокая по сравнению с достигаемой в других топологиях.

2.4 Метод доступа.

В сетях Fast Ethernet используется метод доступа CSMA/CD. Основная концепция этого метода заключается в следующем:

Все станции прослушивают передачи по каналу, определяя состояние канала;

Проверка несущей;

Начало передачи возможно лишь после обнаружения свободного состо-яния канала;

Станция контролирует свою передачу, при обнаружении столкновения (коллизии) передача прекращается и станция генерирует сигнал столкновения;

Передача возобновляется через случайный промежуток времени, дли-тельность которого определяется по специальному алгоритму, если канал в этот момент окажется свободным;

Несколько неудачных попыток передачи интерпретируются станцией как отказ сети.

Даже в случае CSMA/CD может возникнуть ситуация коллизии, когда две или больше станций одновременно определяют свободный канал и начинают по-пытку передачи данных.

  1. Выбор и обоснование аппаратного обеспечения сети

3.1 Коммуникационные устройства

Выбор сетевого адаптера.

Сетевой адаптер - это периферийное устройство компьютера,
непосредственно взаимодействующее со средой передачи данных, которая
прямо или через другое коммуникационное оборудование связывает его с
другими компьютерами. Это устройство решает задачи надежного обмена
двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Сетевой адаптер подключается посредством шины PCI на материнскую плату.

Сетевой адаптер обычно выполняет следующие функции:

  • оформление передаваемой информации в виде кадра определенного формата.
  • получение доступа к среде передачи данных.
  • кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме.
  • преобразование информации из параллельной формы в последовательную и обратно.
  • синхронизация битов, байтов и кадров.

В качестве сетевых адаптеров выбираются сетевые платы TrendNet ТЕ 100-PCIWN.

Выбор концентратора (коммутатора).

Концентратор (повторитель), является центральной частью компьютерной сети в случае реализации топологии «звезда».

Основная функция концентратора - повторение сигналов, поступающих на его порт. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами.

Многопортовый повторитель часто называют концентратором или хабом, что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть.

Отрезки кабеля, соединяющие два компьютера или какие либо два других сетевых устройства, называются физическими сегментам, поэтому концентраторы и повторители, которые используются для добавления новых физических сегментов, являются средством физической структуризации сети.

Концентратор - устройство, у которого суммарная пропускная способность входных каналов выше пропускной способности выходного канала. Так как потоки входных данных в концентраторе больше выходного потока, то главной его задачей является концентрация данных.

Концентратор является активным оборудованием. Концентратор служит центром (шиной) звездообразной конфигурации сети и обеспечивает подключение сетевых устройств. В концентраторе для каждого узла (ПК, принтеры, серверы доступа, телефоны и пр.) должен быть предусмотрен отдельный порт.

Коммутаторы.

Коммутаторы контролируют сетевой трафик и управляют его движением, анализируя адреса назначения каждого пакета. Коммутатор знает, какие устройства соединены с его портами, и направляет пакеты только на необходимые порты. Это дает возможность одновременно работать с несколькими портами, расширяя тем самым полосу пропускания.

Таким образом, коммутация уменьшает количество лишнего трафика, что происходит в тех случаях, когда одна и та же информация передается всем портам,

Коммутаторы и концентраторы часто используются в одной и той же сети; концентраторы расширяют сеть, увеличивая число портов, а коммутаторы разбивают сеть на небольшие, менее перегруженные сегменты. Однако применение коммутатора оправдано лишь в крупных сетях, т. к, его стоимость на порядок выше стоимости концентратора.

Коммутатор следует использовать в случае построения сетей, число рабочих станций в которой составляет более 50, к которому можно отнести и наш случай, вследствие чего выбираем коммутаторы D-Link DES-1024D/E, 24-port Switch 10/100Mbps.

3.2 Сетевое оборудование

Выбор типа кабеля.

Сегодня подавляющее большинство компьютерных сетей в качестве среды передачи использует провода или кабели. Существуют различные типы кабелей, которые удовлетворяют потребностям всевозможных сете от больших до малых.

В большинстве сетей применяется только три основные группы кабелей:

  • коаксиальный кабель (coaxial cable);
  • витая пара (twisted pair):

* неэкранированная (unshielded); о * экранированная (shielded);

Оптоволоконный кабель, одномодовый, многомодовый (fiber
optic).

На сегодня самый распространенный тип кабеля и наиболее подходящий по своим характеристикам - это витая пара. Остановимся на ней более подробно.

Витой парой называется кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводов уменьшает электрические помехи извне при распространении сигналов по кабелю, а экранированные витые пары еще более увеличивают степень помехозащищенности сигналов.

Кабель типа «витая пара» используется во многих сетевых технологиях, включая Ethernet, ARCNet и IBM Token Ring.

Кабели на витой паре подразделяются на: неэкранированные (UTP -Unshielded Twisted Pair) и экранированные медные кабели. Последние подразделяются на две разновидности: с экранированием каждой пары и общим экраном (STP - Shielded Twisted Pair) и с одним только общим экраном (FTP - Foiled Twisted Pair). Наличие или отсутствие экрана у кабеля вовсе не означает наличия или отсутствия защиты передаваемых данных, а говорит лишь о различных подходах к подавлению помех. Отсутствие экрана делает неэкранированные кабели более гибкими и устойчивыми к изломам. Кроме того, они не требуют дорогостоящего контура заземления для эксплуатации в нормальном режиме, как экранированные. Неэкранированные кабели идеально подходят для прокладки в помещениях внутри офисов, а экранированные лучше использовать для установки в местах с особыми условиями эксплуатации, например, рядом с очень сильными источниками электромагнитных излучений, которых в офисах обычно нет.

Вследствие того, что выбрана технология Fast Ethernet 100Base-T, и звездообразная топология предлагается выбрать кабель категории 5 неэкранированная витая пара (UTP).

Выбор разъемов.

Для соединения рабочих станций и коммутатора выбираются разъемы RJ-45, 8-контактные розетки, кабель которых обжимается специальным образом.

Когда компьютер используется для обмена информацией по телефонной
сети, необходимо устройство, которое может принять сигнал из телефонной
сети и преобразовать его в цифровую информацию. Это устройство
называется модем (модулятор-демодулятор). Назначение модема заключается в замене сигнала, поступающего из компьютера (сочетание нулей и единиц), электрическим сигналом с частотой, соответствующей рабочему диапазону телефонной линии.

Модемы бывают внутренние и внешние. Внутренние модемы выполнены в виде платы расширения, вставляемый в специальный слот расширения на материнской плате компьютера. Внешний модем, в отличие от внутреннего, выполнен в виде отдельного устройства, т.е. в отдельном корпусе и со своим блоком питания, когда внутренний модем получает электричество от блока питания компьютера.

Внутренний модем Достоинства

  1. Все внутренние модели без исключения (в отличие от внешних) имеют встроенное FIFO. (First Input First Output - первым пришел, первым принят). FIFO - это микросхема, обеспечивающая буферизацию данных. Обычный модем при прохождении байта данных через порт каждый раз запрашивает прерывания у компьютера. Компьютер по специальным IRQ-линиям прерывает на некоторое время работу модема, а потом опять возобновляет её. Это замедляет работу компьютера в целом. FIFO же позволяет использовать прерывания в несколько раз реже. Это имеет большое значение при работе в многозадачных средах. Таких как Windows95, OS/2, Windows NT, UNIX и других.
  2. При использовании внутреннего модема уменьшается количество проводов, натянутых в самых неожиданных местах. Так же внутренний модем не занимает на рабочем столе.
  3. Внутренние модемы являются последовательным портом компьютера и не занимают существующих портов компьютера.
  4. Внутренние модели модемов всегда дешевле внешних.
    Недостатки
  5. Занимают слот расширения на материнской плате компьютера. Это очень неудобно на мультимедийных машинах, на которых установлено большое количество дополнительных плат, а также на компьютерах, которые работают серверами в сетях.
  6. Нет индикаторных лампочек, которые при имении определённого навыка позволяют следить за процессами, происходящими в модеме.
  7. Если модем завис, то восстановить работоспособность можно восстановить только клавишей перезагрузки компьютера "RESET".

Внешние модемы Достоинства

  1. Они не занимают слот расширения, и при необходимости их можно легко отключить и перенести на другой компьютер.
  2. На передней панели есть индикаторы, которые помогают понять, какую операцию сейчас производит модем.
  3. При зависании модема не нужно перезагружать компьютер, достаточно выключить и включить питание модема.

Недостатки

  1. Необходима мультикарта со встроенным FIFO. Без FIFO модем конечно будет работать, но при этом будет падать скорость передачи данных.
  2. Внешний модем занимает на рабочем столе и ему требуются дополнительные провода для подключения. Это тоже создает некоторое неудобство.
  3. Он занимает последовательный порт компьютера.
  4. Внешний модем всегда дороже аналогичного внутреннего, т.к. включает корпус с индикаторными лампочками и блок питания.

Для нашей сети выберем внутренний модем ZyXEL Omni 56K. V.90 (PCTel) int PCI.

3.3 Планировка помещений

На всех схемах присутствуют условные обозначения:

СВ - сервер.

РС - рабочая станция.

К - коммутатор.

Рис. 1 Схема сети на первом этаже

Рис. 2 Схема сети на втором этаже

Рис. 3 Схема сети на 3 этаже

3.4 Расчет количества кабеля

Расчет общей длины кабеля по этажам, необходимого для построения локальной сети, приведен в таблицах 1,2,3. Кабель прокладывается вдоль стен в специальных коробках.

Таблица 1. Длина кабеля на 1 этаже.

К1-К2 16 метров

К1-К3 14 метров

Общая длина кабеля на первом этаже составляет 96 метров.

Таблица 2. Длина кабеля на 2 этаже

Рабочая станция

Длина кабеля

От РС до К

Длинна кабеля между коммутаторами:

К4К5 17 метров

Длинна кабеля от сервера до К 4 - 1 метр

Общая длина кабеля на втором этаже составляет 156 метра.

Таблица 3. Длина кабеля на 3 этаже

Рабочая станция

Длина кабеля от РС до К

Длинна кабеля между коммутаторами:

К7К6 17 метров

К7К8 15 метров

Общая длина кабеля в сегменте С составляет 230 метра.

Длинна кабеля между этажами по 2 метра

Суммарная длина кабеля всей локальной сети с учетом коэффициента запаса составляет (96+156+230+2+2)* 1,2=583, 2 м.

  1. Инструкция по монтажу сети

В начале развития локальных сетей коаксиальный кабель как среда передачи был наиболее распространен. Он использовался и используется преимущественно в сетях Ethernet и отчасти ARCnet. Различают "толстый" и "тонкий" кабели.

"Толстый Ethernet", как правило, используется следующим образом. Он прокладывается по периметру помещения или здания, и на его концах устанавливаются 50-омные терминаторы. Из-за своей толщины и жесткости кабель не может подключаться непосредственно к сетевой плате. Поэтому на кабель в нужных местах устанавливаются "вампиры" - специальные устройства, прокалывающие оболочку кабеля и подсоединяющиеся к его оплетке и центральной жиле. "Вампир" настолько прочно сидит на кабеле, что после установки его невозможно снять без специального инструмента. К "вампиру", в свою очередь, подключается трансивер - устройство, согласовывающее сетевую плату и кабель. И, наконец, к трансиверу подключается гибкий кабель с 15-контактными разъемами на обоих концах - вторым концом он подсоединяется к разъему AUI (attachment unit interface) на сетевой плате.

Все эти сложности были оправданы только одним - допустимая максимальная длина "толстого" коаксиального кабеля составляет 500 метров. Соответственно одним таким кабелем можно обслужить гораздо большую площадь, чем "тонким" кабелем, максимально допустимая длина которого составляет, как известно, 185 метров. При наличии некоторого воображения можно представить себе, что "толстый" коаксиальный кабель - это распределенный в пространстве Ethernet-концентратор, только полностью пассивный и не требующий питания. Других преимуществ у него нет, недостатков же хоть отбавляй - прежде всего высокая стоимость самого кабеля (порядка 2,5 долл. за метр), необходимость использования специальных устройств для монтажа (25-30 долл. за штуку), неудобство прокладки и т.п. Это постепенно привело к тому, что "толстый Ethernet" медленно, но верно сошел со сцены, и в настоящее время мало где применяется.

"Тонкий Ethernet" распространен значительно шире, чем его "толстый" собрат. Принцип использования у него тот же, но благодаря гибкости кабеля он может присоединяться непосредственно к сетевой плате. Для подключения кабеля используются разъемы BNC (bayonet nut connector), устанавливаемые собственно на кабель, и T-коннекторы, служащие для отвода сигнала от кабеля в сетевую плату. Разъемы типа BNC бывают обжимные и разборные (пример разборного разъема - отечественный разъем СР-50-74Ф).

Т-коннектор

Для монтажа разъема на кабель вам потребуется либо специальный инструмент для обжимки, либо паяльник и плоскогубцы.

Кабель необходимо подготовить следующим образом:

  1. Аккуратно отрежьте так, чтобы его торец был ровным. Наденьте на кабель металлическую муфту (отрезок трубки), который поставляется в комплекте с BNC-разъемом.
  2. Снимите с кабеля внешнюю пластиковую оболочку на длину примерно 20 мм. Будьте аккуратны, чтобы не повредить по возможности ни один проводник оплетки.
  3. Оплетку аккуратно расплетите и разведите в стороны. Снимите изоляцию с центрального проводника на длину примерно 5 мм.
  4. Установите центральный проводник в штырек, который также поставляется в комплекте с разъемом BNC. Используя специальный инструмент, надежно обожмите штырек, фиксируя в нем проводник, либо впаяйте проводник в штырек. При пайке будьте особенно аккуратны и внимательны - плохая пайка через некоторое время станет причиной отказов в работе сети, причем локализовать это место будет достаточно трудно.
  5. Вставьте центральный проводник с установленным на него штырьком в тело разъема до щелчка. Щелчок означает, что штырек сел на свое место в разъеме и зафиксировался там.
  6. Равномерно распределите проводники оплетки по поверхности разъема, если необходимо, обрежьте их до нужной длины. Надвиньте на разъем металлическую муфту.
  7. Специальным инструментом (или плоскогубцами) аккуратно обожмите муфту до обеспечения надежного контакта оплетки с разъемом. Не обжимайте слишком сильно - можно повредить разъем или пережать изоляцию центрального проводника. Последнее может привести к неустойчивой работе всей сети. Но и обжимать слишком слабо тоже нельзя - плохой контакт оплетки кабеля с разъемом также приведет к отказам в работе.

Отмечу, что отечественный разъем СР-50 монтируется примерно так же, за исключением того, что оплетка в нем заделывается в специальную разрезную втулку и закрепляется гайкой. В некоторых случаях это может оказаться даже удобнее.

Кабели на основе витой пары

Витая пара (UTP/STP, unshielded/shielded twisted pair) в настоящее время является наиболее распространенной средой передачи сигналов в локальных сетях. Кабели UTP/STP используются в сетях Ethernet, Token Ring и ARCnet. Они различаются по категориям (в зависимости от полосы пропускания) и типу проводников (гибкие или одножильные). В кабеле 5-й категории, как правило, находится восемь проводников, перевитых попарно (то есть четыре пары).

Кабель UTP

Структурированная кабельная система, построенная на основе витой пары 5-й категории, имеет очень большую гибкость в использовании. Ее идея заключается в следующем.

На каждое рабочее место устанавливается не менее двух (рекомендуется три) четырехпарных розеток RJ-45. Каждая из них отдельным кабелем 5-й категории соединяется с кроссом или патч-панелью, установленной в специальном помещении, - серверной. В это помещение заводятся кабели со всех рабочих мест, а также городские телефонные вводы, выделенные линии для подключения к глобальным сетям и т.п. В помещении, естественно, монтируются серверы, а также офисная АТС, системы сигнализации и прочее коммуникационное оборудование.

Благодаря тому что кабели со всех рабочих мест сведены на общую панель, любую розетку можно использовать как для подключения рабочего места к ЛВС, так и для телефонии или вообще чего угодно. Допустим, две розетки на рабочем месте были подключены к компьютеру и принтеру, а третья - к телефонной станции. В процессе работы появилась необходимость убрать принтер с рабочего места и установить вместо него второй телефон. Нет ничего проще - патч-корд соответствующей розетки отключается от концентратора и переключается на телефонный кросс, что займет у администратора сети никак не больше нескольких минут.

Розетка на 2 порта

Патч-панель, или панель соединений, представляет собой группу розеток RJ-45, смонтированных на пластине шириной 19 дюймов. Это стандартный размер для универсальных коммуникационных шкафов - рэков (rack), в которых устанавливается оборудование (концентраторы, серверы, источники бесперебойного питания и т.п.). На обратной стороне панели смонтированы соединители, в которые монтируются кабели.

Кросс в отличие от патч-панели розеток не имеет. Вместо них он несет на себе специальные соединительные модули. В данном случае его преимущество перед патч-панелью в том, что при его использовании в телефонии вводы можно соединять между собой не специальными патч-кордами, а обычными проводами. Кроме того, кросс можно монтировать прямо на стену - наличия коммуникационного шкафа он не требует. В самом деле, нет смысла приобретать дорогостоящий коммуникационный шкаф, если вся ваша сеть состоит из одного-двух десятков компьютеров и сервера.

Кабели с многожильными гибкими проводниками используются в качестве патч-кордов, то есть соединительных кабелей между розеткой и сетевой платой, либо между розетками на панели соединений или кроссе. Кабели с одножильными проводниками - для прокладки собственно кабельной системы. Монтаж разъемов и розеток на эти кабели совершенно идентичен, но обычно кабели с одножильными проводниками монтируются на розетки рабочих мест пользователей, панели соединений и кроссы, а разъемы устанавливают на гибкие соединительные кабели.

Патч-панель

Как правило, применяются следующие виды разъемов:

  • S110 - общее название разъемов для подключения кабеля к универсальному кроссу "110" или коммутации между вводами на кроссе;
  • RJ-11 и RJ-12 - разъемы с шестью контактами. Первые обычно применяются в телефонии общего назначения - вы можете встретить такой разъем на шнурах импортных телефонных аппаратов. Второй обычно используется в телефонных аппаратах, предназначенных для работы с офисными мини-АТС, а также для подключения кабеля к сетевым платам ARCnet;
  • RJ-45 - восьмиконтактный разъем, использующийся обычно для подключения кабеля к сетевым платам Ethernet либо для коммутации на панели соединений.

Разъем RJ-45

В зависимости от того, что с чем нужно коммутировать, применяются различные патч-корды: "45-45" (с каждой стороны по разъему RJ-45), "110-45" (с одной стороны S110, с другой - RJ-45) или "110-110".

Для монтажа разъемов RJ-11, RJ-12 и RJ-45 используются специальные обжимочные приспособления, различающиеся между собой количеством ножей (6 или 8) и размерами гнезда для фиксации разъема. В качестве примера рассмотрим монтаж кабеля 5-й категории на разъем RJ-45.

  1. Аккуратно обрежьте конец кабеля. Торец кабеля должен быть ровным.
  2. Используя специальный инструмент, снимите с кабеля внешнюю изоляцию на длину примерно 30 мм и обрежьте нить, вмонтированную в кабель (нить предназначена для удобства снятия изоляции с кабеля на большую длину). Любые повреждения (надрезы) изоляции проводников абсолютно недопустимы - именно поэтому желательно использовать специальный инструмент, лезвие резака которого выступает ровно на толщину внешней изоляции.
  3. Аккуратно разведите, расплетите и выровняйте проводники. Выровняйте их в один ряд, при этом соблюдая цветовую маркировку. Существует два наиболее распространенных стандарта по разводке цветов по парам: T568A (рекомендуемый компанией Siemon) и T568B (рекомендуемый компанией ATT и фактически наиболее часто применяемый).

На разъеме RJ-45 цвета проводников располагаются так:

Проводники должны располагаться строго в один ряд, без нахлестов друг на друга. Удерживая их одной рукой, другой ровно обрежьте проводники так, чтобы они выступали над внешней обмоткой на 8-10 мм.

  1. Держа разъем защелкой вниз, вставьте в него кабель. Каждый проводник должен попасть на свое место в разъеме и упереться в ограничитель. Прежде чем обжимать разъем, убедитесь, что вы не ошиблись в разводке проводников. При неправильной разводке помимо отсутствия соответствия номерам контактов на концах кабеля, легко выявляемого с помощью простейшего тестера, возможна более неприятная вещь - появление "разбитых пар" (splitted pairs).

Для выявления этого брака обычного тестера недостаточно, так как электрический контакт между соответствующими контактами на концах кабеля обеспечивается и с виду все как будто бы нормально. Но такой кабель никогда не сможет обеспечить нормальное качество соединения даже в 10-мегабитной сети на расстояние более 40-50 метров. Поэтому нужно быть внимательным и не торопиться, особенно если у вас нет достаточного опыта.

  1. Вставьте разъем в гнездо на обжимочном приспособлении и обожмите его до упора-ограничителя на приспособлении. В результате фиксатор на разъеме встанет на свое место, удерживая кабель в разъеме неподвижным. Контактные ножи разъема врежутся каждый в свой проводник, обеспечивая надежный контакт.

Аналогичным образом можно осуществить монтаж разъемов RJ-11 и RJ-12, используя соответствующий инструмент.

Для монтажа разъема S110 специального обжимочного инструмента не требуется. Сам разъем поставляется в разобранном виде. Кстати, в отличие от "одноразовых" разъемов типа RJ разъем S110 допускает многократную разборку и сборку, что очень удобно. Последовательность действий при монтаже следующая:

  1. Снимите внешнюю изоляцию кабеля на длину примерно 40 мм, разведите в стороны пары проводников, не расплетая их.
  2. Закрепите кабель (в той половинке разъема, на которой нет контактной группы) с помощью пластмассовой стяжки и отрежьте получившийся "хвост".
  3. Аккуратно уложите каждый проводник в органайзер на разъеме. Не расплетайте пару на большую, чем требуется, длину - это ухудшит характеристики всего кабельного соединения. Последовательность укладки пар обычная - синяя-оранжевая-зеленая-коричневая; при этом светлый провод каждой пары укладывается первым.
  4. Острым инструментом (бокорезами или ножом) обрежьте каждый проводник по краю разъема.
  5. Установите на место вторую половинку разъема и руками обожмите ее до защелкивания всех фиксаторов. При этом ножи контактной группы врежутся в проводники, обеспечивая контакт.

Оптоволоконный кабель

Оптоволоконные кабели - наиболее перспективная и обеспечивающая наибольшее быстродействие среда распространения сигналов для локальных сетей и телефонии. В локальных сетях оптоволоконные кабели используются для работы по протоколам ATM и FDDI.

Приспособление для снятия изоляции и обжимки разъема

Оптоволокно, как понятно из его названия, передает сигналы при помощи импульсов светового излучения. В качестве источников света используются полупроводниковые лазеры, а также светодиоды. Оптоволокно подразделяется на одно- и многомодовое.

Одномодовое волокно очень тонкое, его диаметр составляет порядка 10 микрон. Благодаря этому световой импульс, проходя по волокну, реже отражается от его внутренней поверхности, что обеспечивает меньшее затухание. Соответственно одномодовое волокно обеспечивает большую дальность без применения повторителей. Теоретическая пропускная способность одномодового волокна составляет 10 Гбит/с. Его основные недостатки - высокая стоимость и высокая сложность монтажа. Одномодовое волокно применяется в основном в телефонии.

Многомодовое волокно имеет больший диаметр - 50 или 62,5 микрона. Этот тип оптоволокна чаще всего применяется в компьютерных сетях. Большее затухание во многомодовом волокне объясняется более высокой дисперсией света в нем, из-за которой его пропускная способность существенно ниже - теоретически она составляет 2,5 Гбит/с.

Для соединения оптического кабеля с активным оборудованием применяются специальные разъемы. Наиболее распространены разъемы типа SC и ST.

Монтаж соединителей на оптоволоконный кабель - очень ответственная операция, требующая опыта и специального обучения, поэтому не стоит заниматься этим в домашних условиях, не будучи специалистом.

  1. Расчет стоимости оборудования

Стоимость компонентов показана в таблице 4 (по данным интернет магазина «М-видео» в г. Балаково).

Таблица 4 стоимость оборудования

Из таблицы видно, что затраты на проектирование сети не превышают разумных пределов.

  1. Перспективы развития сети

ЛВС представленная в данной работе может развиваться и расширяться. На данном этапе для улучшения локальной сети могут быть предприняты следующие меры:

Подключение дополнительного сетевого сегмента на втором и третьем этажах;

Подключение дополнительных рабочих станций на любом участке сети;

Установка управляемых коммутаторов в наиболее нагруженные сегменты сети (непосредственно в компьютерные классы);

Разгрузка наиболее нагруженных сегментов сети путем разбиения ее на ветви;

Обновление программного обеспечения для повышения качества сети.

Заключение

В ходе работы была разработана локальная вычислительная сеть, состоящая из 38 рабочих станций и 1 сервера на основе технологии Fast Ethernet, самого распространенного типа сети в настоящее время, к достоинствам которого можно отнести простоту настройки, дешевизну компонентов. Звездообразная топология, используемая в проекте, обеспечивает возможность централизованного управления сетью, обеспечивает простоту поиска вышедшего из строя узла. Сеть построена с учетом будущего развития. В качестве операционной системы сервера выбрана Windows Server 2003 R2. Рассчитано необходимое количество сетевого оборудования, его цена приведены данные и расчеты используемого оборудования, затраты на построение составляют 66 539 руб. Составлен подробный план сети, где указаны все характеристики используемых компонентов. Задачи, заданные на проектирование, в целом выполнены. Работа имеет все необходимые данные и расчеты для построения сети.

Список литературы

  1. Актерский, Ю.Е. Сети ЭВМ и телекоммуникации: учебное пособие Ю.Е. Актерский. - СПб.: ПВИРЭ КВ, 2005. - 223 с.
  2. Арчибальд, Р.Д. Управление высокотехнологичными программами и проектами / - М.: ДМК Пресс, 2010. - 464 с.
  3. Балафанов, Е.К. Новые информационные технологии. 30 уроков информатики / Е.К. Балафанов, Б.Б. Бурибаев, А.Б. Даулеткулов. - Алма-Ата.: Патриот, 2004. - 220 с.
  4. Брезгунова, И.В. Аппаратные и программные средства персонального компьютера. Операционная система Microsoft Windows XP / - М: РИВШ, 2011. - 164 с.
  5. Брябрин В.М. Программное обеспечение персональных ЭВМ. - М.: Наука, 1990. 22 с.
  6. Велихов А.В., Строчников К.С., Леонтьев Б.К. Компьютерные сети: Учебное пособие по администрированию локальных и объединенных сетей / - М: Познавательная книга-Пресс, 2004 - 320 с.
  7. Воройский, Ф.С. Информатика. Новый систематизированный толковый словарь-справочник (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах) / Ф.С. Воройский -- 3-е изд., перераб. и доп. -- М.: ФИЗМАТЛИТ, 2003. -- 760 с
  8. Гиляревский, Р.С. Информационный менеджмент. Управление информацией, знаниями, технологией - М.: Профессия, 2009. - 304 с.
  9. Граничин, О.Н. Информационные технологии в управлении / - М.: Бином, 2011. - 336 с.
  10. Гук М. Аппаратные средства локальных сетей. Энциклопедия - СПб.: Питер, 2000. -576с.
  11. Додд, А.З. Мир телекоммуникаций. Обзор технологий и отрасли / А.З. Додд. - М.:Олимп-Бизнес, 2005. - 400 с.
  12. Дэн Холме, Нельсон Рест, Даниэль Рест. Настройка Active Directory. Windows Server 2008. Учебный курс Microsoft / - М: Русская редакция, 2011 - 960 с.
  13. Журин А. Самоучитель работы на компьютере. MS Windows XP. Office XP/ А. Журин. - М.: Корона - Принт, 2009. - 370 с.
  14. Заика, А. Компьютерные сети / А. Заика, М.: Олма-Пресс, 2006. - 448 с.
  15. Закер Крэйг. Планирование и поддержка сетевой инфраструктуры Microsoft Windows Server 2003 /- М: Русская редакция, 2005 - 544 с.
  16. Кангин, В.В. Аппаратные и программные средства систем управления / - М.: Бином. Лаборатория знаний, 2010. - 424 с.

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.

Свисавшие со стен пучки проводов в коридорах общественных зданий канули в лета. Теперь коммуникации прокладываются скрытым образом, в коробах, лотках за подвесными потолками, через коммутирующие этажные шкафы в центры серверного оборудования. Все оконечные устройства-розетки плотно закреплены на своих местах, в стенах или коробах, промаркированы и пронумерованы, сами сети стали локальными, выполняющими специализированную роль среди отдельной группы информационных устройств.

Как осуществляется построение локальных сетей

Современными сетями удобно пользоваться, в них ничего «не отходит», в них легко можно интегрировать различные даже новые приложения и менять назначение. Сама кабельная инфраструктура или локально вычислительная сеть (ЛВС) , служит долгие годы, например, меняя активное оборудование, устаревающие намного быстрей, вы легко увеличиваете пропускные возможности без серьезных инвестиций и капитальных затрат. Всему этому предшествует проектирование локальных сетей, которое определяет тип и назначение будущих локально вычислительных сетей. Устраивают ЛВС не только для группы компьютеров объединенных одной задачей, но и для локальных или раздельных приложений. Целей для чего делается построение ЛВС большое множество и правильно сформулированное техническое задание (ТЗ) поможет проектировщику воплотить все желания заказчика. Проект ЛВС очень четко и подробно должен описывать создаваемую инфраструктуру. На подробных поэтажных планах отмечают расположение оконечных устройств, компьютерных розеток, их назначение, нумерацию и маркировку, кроссировочные схемы, модель и марку. При строительстве ЛВС могут использоваться различные материалы и оборудование от разных или от конкретного производителя, выбор этих элементов и систем то же определяется проектом ЛВС.

Но не все так легко и просто как кажется на первый взгляд, есть определенные риски. Так например, техническое задание (ТЗ), должно быть составляющей частью договора на проектно-изыскательские работы. Компания, занимающаяся проектированием, должна иметь многолетний опыт в данной области, иметь необходимые лицензии, сертификаты и допуски, то есть быть проверенной и профессиональной. Очень большое количество энтузиастов-любителей берутся за выполнение работ не только без проектирования, без предварительных исследований объекта, но и без предварительно-согласованных схем, планов и графика работ. От сюда дополнительные работы, увеличение сроков исполнения, грязь и шум в офисе, отсутствие четких понятий о нуждах заказчика.

Стоимость проектирования ЛВС ничтожно мала по сравнению с последствиями ликвидации неправильно выполненных работ, неправильно проложенного или совершенно не подходящего кабеля.

Сделанные один раз капитальные вложения в кабельную инфраструктуру в частности в устройство ЛВС многократно окупятся в первый же год если Вы пошли по правильному пути: обратились в специализированную компанию, например к нам, в ООО «ИнжинирингГрупп». Мы уже на этапе создания ТЗ сможем сократить бюджет и время Заказчика, приедем на обследование объекта (выезд по Московскому региону - бесплатно), поможем Вам правильно сформулировать ТЗ и расскажем о новшествах и инновациях в данной сфере.

Заказав и получив грамотный проект ЛВС, вы сможете воплотить его в жизнь с помощью любой профессиональной монтажной компании. Но если вы у нас закажете и выполнение работ мы сможем вернуть часть денежных средств (до 30%) потраченных при проектировании.